Porous graphene-carbon nanotube hybrid paper as a flexible nano-scaffold for polyaniline immobilization and application in all-solid-state supercapacitors

被引:38
作者
Fan, Wei [1 ]
Miao, Yue-E [1 ]
Zhang, Longsheng [1 ]
Huang, Yunpeng [1 ]
Liu, Tianxi [1 ]
机构
[1] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRODE MATERIALS; COMPOSITE PAPER; ENERGY; FABRICATION; CAPACITANCE; ARRAYS; FILM; FRAMEWORKS; SUBSTRATE; NETWORKS;
D O I
10.1039/c5ra02902c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polyaniline (PANI) has been recognized as an ideal candidate for electrode materials in supercapacitors. However, the relatively low electrical conductivity and poor cyclic stability severely limit its potential applications. Therefore, a proper substrate with carefully designed nanostructures for PANI immobilization is highly desirable for realizing its full performance. In this study, three-dimensional porous graphene-carbon nanotube (p-GC) hybrid papers with high porosity, excellent electrical conductivity and good flexibility were utilized as a nano-scaffold for the in situ polymerization of PANI, thus obtaining flexible p-GC/PANI ternary hybrid papers with hierarchical nanostructures. The good electrical conductivity and optimized porous nanostructure of the p-GC hybrid paper provides improved conductive pathways and high surface area, ensuring the efficient utilization of the pseudocapacitance of PANI. Thus, the ternary hybrid paper exhibits a high specific capacitance of up to 409 F g(-1) at a current density of 10 A g(-1), as well as excellent rate and cyclic performance. Furthermore, the dimensional confinement of PANI particles within the p-GC framework effectively prohibits volume expansion and shrinkage upon electrolyte soakage and cycling. Therefore, the p-GC hybrid paper with tunable hierarchical nanostructures can act as a promising substrate to enhance the electrochemical properties of PANI or other electroactive materials and can be easily extended to the design of next-generation high-performance flexible supercapacitors.
引用
收藏
页码:31064 / 31073
页数:10
相关论文
共 53 条
[1]   Macroporous 'bubble' graphene film via template-directed ordered-assembly for high rate supercapacitors [J].
Chen, Cheng-Meng ;
Zhang, Qiang ;
Huang, Chun-Hsien ;
Zhao, Xiao-Chen ;
Zhang, Bing-Sen ;
Kong, Qing-Qiang ;
Wang, Mao-Zhang ;
Yang, Yong-Gang ;
Cai, Rong ;
Su, Dang Sheng .
CHEMICAL COMMUNICATIONS, 2012, 48 (57) :7149-7151
[2]   Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J].
Chen, RJ ;
Zhang, YG ;
Wang, DW ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) :3838-3839
[3]   A Three-Dimensionally Interconnected Carbon Nanotube-Conducting Polymer Hydrogel Network for High-Performance Flexible Battery Electrodes [J].
Chen, Zheng ;
To, John W. F. ;
Wang, Chao ;
Lu, Zhenda ;
Liu, Nan ;
Chortos, Alex ;
Pan, Lijia ;
Wei, Fei ;
Cui, Yi ;
Bao, Zhenan .
ADVANCED ENERGY MATERIALS, 2014, 4 (12)
[4]   Freestanding Graphene Paper Supported Three-Dimensional Porous Graphene-Polyaniline Nanoconnposite Synthesized by Inkjet Printing and in Flexible All-Solid-State Supercapacitor [J].
Chi, Kai ;
Zhang, Zheye ;
Xi, Jiangbo ;
Huang, Yongan ;
Xiao, Fei ;
Wang, Shuai ;
Liu, Yunqi .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) :16312-16319
[5]   3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities [J].
Choi, Bong Gill ;
Yang, MinHo ;
Hong, Won Hi ;
Choi, Jang Wook ;
Huh, Yun Suk .
ACS NANO, 2012, 6 (05) :4020-4028
[6]   Flexible graphene-polyaniline composite paper for high-performance supercapacitor [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1185-1191
[7]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[8]   Free-standing polyaniline-porous carbon nanofiber electrodes for symmetric and asymmetric supercapacitors [J].
Dirican, Mahmut ;
Yanilmaz, Meltem ;
Zhang, Xiangwu .
RSC ADVANCES, 2014, 4 (103) :59427-59435
[9]   3D conductive network-based free-standing PANI-RGO-MWNTs hybrid film for high-performance flexible supercapacitor [J].
Fan, Haosen ;
Zhao, Ning ;
Wang, Hao ;
Xu, Jian ;
Pan, Feng .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (31) :12340-12347
[10]   High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support [J].
Fan, Li-Zhen ;
Hu, Yong-Sheng ;
Maier, Joachim ;
Adelhelm, Philipp ;
Smarsly, Bernd ;
Antonietti, Markus .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3083-3087