Structural Models of Zebrafish (Danio rerio) NOD1 and NOD2 NACHT Domains Suggest Differential ATP Binding Orientations: Insights from Computational Modeling, Docking and Molecular Dynamics Simulations

被引:35
作者
Maharana, Jitendra [1 ,2 ]
Sahoo, Bikash Ranjan [1 ]
Bej, Aritra [1 ]
Jena, Itishree [1 ]
Parida, Arunima [1 ]
Sahoo, Jyoti Ranjan [1 ]
Dehury, Budheswar [3 ]
Patra, Mahesh Chandra [1 ]
Martha, Sushma Rani [1 ]
Balabantray, Sucharita [1 ]
Pradhan, Sukanta Kumar [1 ]
Behera, Bijay Kumar [2 ]
机构
[1] Orissa Univ Agr & Technol, Dept Bioinformat, Bhubaneswar 751003, Odisha, India
[2] ICAR Cent Inland Fisheries Res Inst, Biotechnol Lab, Kolkata, W Bengal, India
[3] Reg Med Res Inst ICMR, Biomed Informat Ctr, Bhubaneswar, Odisha, India
来源
PLOS ONE | 2015年 / 10卷 / 03期
关键词
NUCLEOTIDE-BINDING; MURAMYL DIPEPTIDE; CRITICAL RESIDUES; CARD15; MUTATIONS; INNATE IMMUNITY; WEB SERVER; RECEPTOR; IDENTIFICATION; RECOGNITION; PROTEINS;
D O I
10.1371/journal.pone.0121415
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack of structural adequacy of NACHT domain confines our understanding about the NOD-mediated signaling mechanism. Here, we predicted the structure of NACHT domain of both NOD1 and NOD2 from model organism zebrafish (Danio rerio) using computational methods. Our study highlighted the differential ATP binding modes in NOD1 and NOD2. In NOD1, gamma-phosphate of ATP faced toward the central nucleotide binding cavity like NLRC4, whereas in NOD2 the cavity was occupied by adenine moiety. The conserved 'Lysine' at Walker A formed hydrogen bonds (H-bonds) and Aspartic acid (Walker B) formed electrostatic interaction with ATP. At Sensor 1, Arg328 of NOD1 exhibited an H-bond with ATP, whereas corresponding Arg404 of NOD2 did not. 'Proline' of GxP motif (Pro386 of NOD1 and Pro464 of NOD2) interacted with adenine moiety and His511 at Sensor 2 of NOD1 interacted with gamma-phosphate group of ATP. In contrast, His579 of NOD2 interacted with the adenine moiety having a relatively inverted orientation. Our findings are well supplemented with the molecular interaction of ATP with NLRC4, and consistent with mutagenesis data reported for human, which indicates evolutionary shared NOD signaling mechanism. Together, this study provides novel insights into ATP binding mechanism, and highlights the differential ATP binding modes in zebrafish NOD1 and NOD2.
引用
收藏
页数:25
相关论文
共 73 条
  • [51] Open Babel: An open chemical toolbox
    O'Boyle, Noel M.
    Banck, Michael
    James, Craig A.
    Morley, Chris
    Vandermeersch, Tim
    Hutchison, Geoffrey R.
    [J]. JOURNAL OF CHEMINFORMATICS, 2011, 3
  • [52] The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish
    Oehlers, Stefan H.
    Flores, Maria Vega
    Hall, Chris J.
    Swift, Simon
    Crosier, Kathryn E.
    Crosier, Philip S.
    [J]. DISEASE MODELS & MECHANISMS, 2011, 4 (06) : 832 - 841
  • [53] Interaction between NOD2 and CARD9 involves the NOD2 NACHT and the linker region between the NOD2 CARDs and NACHT domain
    Parkhouse, Rhiannon
    Boyle, Joseph P.
    Mayle, Sophie
    Sawmynaden, Kovilen
    Rittinger, Katrin
    Monie, Tom P.
    [J]. FEBS LETTERS, 2014, 588 (17): : 2830 - 2836
  • [54] RaptorX: Exploiting structure information for protein alignment by statistical inference
    Peng, Jian
    Xu, Jinbo
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 : 161 - 171
  • [55] The Nod-Like Receptor (NLR) Family: A Tale of Similarities and Differences
    Proell, Martina
    Riedl, Stefan J.
    Fritz, Joerg H.
    Rojas, Ana M.
    Schwarzenbacher, Robert
    [J]. PLOS ONE, 2008, 3 (04):
  • [56] GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit
    Pronk, Sander
    Pall, Szilard
    Schulz, Roland
    Larsson, Per
    Bjelkmar, Par
    Apostolov, Rossen
    Shirts, Michael R.
    Smith, Jeremy C.
    Kasson, Peter M.
    van der Spoel, David
    Hess, Berk
    Lindahl, Erik
    [J]. BIOINFORMATICS, 2013, 29 (07) : 845 - 854
  • [57] InterProScan: protein domains identifier
    Quevillon, E
    Silventoinen, V
    Pillai, S
    Harte, N
    Mulder, N
    Apweiler, R
    Lopez, R
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 : W116 - W120
  • [58] STEREOCHEMISTRY OF POLYPEPTIDE CHAIN CONFIGURATIONS
    RAMACHANDRAN, GN
    RAMAKRISHNAN, C
    SASISEKHARAN, V
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1963, 7 (01) : 95 - &
  • [59] A conformational analysis of mouse Nalp3 domain structures by molecular dynamics simulations, and binding site analysis
    Sahoo, Bikash R.
    Maharana, Jitendra
    Bhoi, Gopal K.
    Lenka, Santosh K.
    Patra, Mahesh C.
    Dikhit, Manas R.
    Dubey, Praveen K.
    Pradhan, Sukanta K.
    Behera, Bijay K.
    [J]. MOLECULAR BIOSYSTEMS, 2014, 10 (05) : 1104 - 1116
  • [60] Activation of Nucleotide-Binding Oligomerization Domain 1 (NOD1) Receptor Signaling in Labeo rohita by iE-DAP and Identification of Ligand-Binding Key Motifs in NOD1 by Molecular Modeling and Docking
    Sahoo, Bikash Ranjan
    Swain, Banikalyan
    Dikhit, Manas Ranjan
    Basu, Madhubanti
    Bej, Aritra
    Jayasankar, Pallipuram
    Samanta, Mrinal
    [J]. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2013, 170 (06) : 1282 - 1309