Detecting total hip replacement prosthesis design on plain radiographs using deep convolutional neural network

被引:76
作者
Borjali, Alireza [1 ,2 ]
Chen, Antonia F. [3 ]
Muratoglu, Orhun K. [1 ,2 ]
Morid, Mohammad A. [4 ]
Varadarajan, Kartik M. [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Dept Orthopaed Surg, Harris Orthopaed Lab, Boston, MA 02114 USA
[2] Harvard Med Sch, Dept Orthopaed Surg, Boston, MA 02115 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Dept Orthopaed Surg, Boston, MA 02115 USA
[4] Santa Clara Univ, Leavey Sch Business, Dept Informat Syst & Analyt, Santa Clara, CA USA
关键词
artificial intelligence; deep learning; implant identification; orthopedic; saliency maps; total hip replacement;
D O I
10.1002/jor.24617
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Identifying the design of a failed implant is a key step in the preoperative planning of revision total joint arthroplasty. Manual identification of the implant design from radiographic images is time-consuming and prone to error. Failure to identify the implant design preoperatively can lead to increased operating room time, more complex surgery, increased blood loss, increased bone loss, increased recovery time, and overall increased healthcare costs. In this study, we present a novel, fully automatic and interpretable approach to identify the design of total hip replacement (THR) implants from plain radiographs using deep convolutional neural network (CNN). CNN achieved 100% accuracy in the identification of three commonly used THR implant designs. Such CNN can be used to automatically identify the design of a failed THR implant preoperatively in just a few seconds, saving time and improving the identification accuracy. This can potentially improve patient outcomes, free practitioners' time, and reduce healthcare costs.
引用
收藏
页码:1465 / 1471
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 2017, DEEP INSIDE CONVOLUT
[2]   Predicting the polyethylene wear rate in pin-on-disc experiments in the context of prosthetic hip implants: Deriving a data-driven model using machine learning methods [J].
Borjali, A. ;
Monson, K. ;
Raeymaekers, B. .
TRIBOLOGY INTERNATIONAL, 2019, 133 :101-110
[3]  
Borjali A, 2019, ARXIV191200943EESSIV
[4]   Automated detection and classification of the proximal humerus fracture by using deep learning algorithm [J].
Chung, Seok Won ;
Han, Seung Seog ;
Lee, Ji Whan ;
Oh, Kyung-Soo ;
Kim, Na Ra ;
Yoon, Jong Pil ;
Kim, Joon Yub ;
Moon, Sung Hoon ;
Kwon, Jieun ;
Lee, Hyo-Jin ;
Noh, Young-Min ;
Kim, Youngjun .
ACTA ORTHOPAEDICA, 2018, 89 (04) :468-473
[5]   Is Changing Hospitals for Revision Total Joint Arthroplasty Associated With More Complications? [J].
Dy, Christopher J. ;
Bozic, Kevin J. ;
Padgett, Douglas E. ;
Pan, Ting Jung ;
Marx, Robert G. ;
Lyman, Stephen .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2014, 472 (07) :2006-2015
[6]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[7]  
Hunter T, 2019, GALLERY ORTHOPEDIC M
[8]   Ankle Fracture Detection Utilizing a Convolutional Neural Network Ensemble Implemented with a Small Sample, De Novo Training, and Multiview Incorporation [J].
Kitamura, Gene ;
Chung, Chul Y. ;
Moore, Barry E., II .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) :672-677
[9]   Prevalence of Total Hip and Knee Replacement in the United States [J].
Kremers, Hilal Maradit ;
Larson, Dirk R. ;
Crowson, Cynthia S. ;
Kremers, Walter K. ;
Washington, Raynard E. ;
Steiner, Claudia A. ;
Jiranek, William A. ;
Berry, Daniel J. .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2015, 97A (17) :1386-1397
[10]  
Krogue JD, 2019, AUTOMATIC HIP FRACTU