Extreme Two-Phase Cooling from Laser-Etched Diamond and Conformal, Template-Fabricated Microporous Copper

被引:105
作者
Palko, James W. [1 ,2 ]
Lee, Hyoungsoon [3 ]
Zhang, Chi [1 ]
Dusseault, Tom J. [1 ]
Maitra, Tanmoy [1 ]
Won, Yoonjin [4 ]
Agonafer, Damena D. [5 ]
Moss, Jess [1 ]
Houshmand, Farzad [1 ]
Rong, Guoguang [6 ]
Wilbur, Joshua D. [1 ]
Rockosi, Derrick [7 ]
Mykyta, Ihor [7 ]
Resler, Dan [7 ]
Altman, David [7 ]
Asheghi, Mehdi [1 ]
Santiago, Juan G. [1 ]
Goodson, Kenneth E. [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Univ Calif Merced, Dept Mech Engn, Merced, CA 95340 USA
[3] Chung Ang Univ, Sch Mech Engn, Seoul 06974, South Korea
[4] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[5] Washington Univ, Dept Mech Engn & Mat Sci, St Louis, MO 63130 USA
[6] Suzhou Vocat Inst Ind Technol, Elect & Commun Engn Dept, Suzhou 215021, Peoples R China
[7] Raytheon Integrated Def Syst, Adv Technol Programs, Sudbury, MA 01776 USA
基金
美国国家科学基金会;
关键词
boiling; diamond; laser ablation; porous copper; templated electrodeposition; THERMAL MANAGEMENT; RAMAN-SPECTROSCOPY; ENHANCEMENT; EVAPORATION; EXPANSION; WICKS;
D O I
10.1002/adfm.201703265
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper reports the first integration of laser-etched polycrystalline diamond microchannels with template-fabricated microporous copper for extreme convective boiling in a composite heat sink for power electronics and energy conversion. Diamond offers the highest thermal conductivity near room temperature, and enables aggressive heat spreading along triangular channel walls with 1:1 aspect ratio. Conformally coated porous copper with thickness 25 mu m and 5 mu m pore size optimizes fluid and heat transport for convective boiling within the diamond channels. Data reported here include 1280 W cm(-2) of heat removal from 0.7 cm(2) surface area with temperature rise beyond fluid saturation less than 21 K, corresponding to 6.3 x 10(5) W m(-2) K-1. This heat sink has the potential to dissipate much larger localized heat loads with small temperature nonuniformity (5 kW cm(-2) over 200 mu m x 200 mu m with <3 K temperature difference). A microfluidic manifold assures uniform distribution of liquid over the heat sink surface with negligible pumping power requirements (e.g., <1.4 x 10(-4) of the thermal power dissipated). This breakthrough integration of functional materials and the resulting experimental data set a very high bar for microfluidic heat removal.
引用
收藏
页数:8
相关论文
共 52 条
[1]  
Agonafer D. D., 2014, P 2014 IEEE COMP SEM, P1
[2]   State of the art of high heat flux cooling technologies [J].
Agostini, Bruno ;
Fabbri, Matteo ;
Park, Jung E. ;
Wojtan, Leszek ;
Thome, John R. ;
Michel, Bruno .
HEAT TRANSFER ENGINEERING, 2007, 28 (04) :258-281
[3]   Impact of active thermal management on power electronics design [J].
Andresen, M. ;
Liserre, M. .
MICROELECTRONICS RELIABILITY, 2014, 54 (9-10) :1935-1939
[4]  
[Anonymous], 2013, TECHN DIG IEEE COMP
[5]  
Bar-Cohen A., 2009, 2009 IEEE INT C MICR, P1, DOI DOI 10.1109/COMCAS.2009.5385939
[6]   Thermal Management of On-Chip Hot Spot [J].
Bar-Cohen, Avram ;
Wang, Peng .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2012, 134 (05)
[7]   Cooling the Electronic Brain [J].
Bar-Cohen, Avram ;
Geisler, Karl J. L. .
MECHANICAL ENGINEERING, 2011, 133 (04) :38-41
[8]   Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals [J].
Barako, Michael T. ;
Sood, Aditya ;
Zhang, Chi ;
Wang, Junjie ;
Kodama, Takashi ;
Asheghi, Mehdi ;
Zheng, Xiaolin ;
Braun, Paul V. ;
Goodson, Kenneth E. .
NANO LETTERS, 2016, 16 (04) :2754-2761
[9]  
Barako MT, 2014, INTSOC CONF THERMAL, P736, DOI 10.1109/ITHERM.2014.6892354
[10]   THERMAL-EXPANSION OF COPPER BETWEEN 300 AND 700-K [J].
BENNETT, SJ .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1978, 11 (05) :777-780