共 40 条
Cross-Scale Predictive Modeling of CHO Cell Culture Growth and Metabolites Using Raman Spectroscopy and Multivariate Analysis
被引:123
作者:
Berry, Brandon
[1
]
Moretto, Justin
[2
]
Matthews, Thomas
[2
]
Smelko, John
[2
]
Wiltberger, Kelly
[2
]
机构:
[1] Biogen Idec Inc, Cell Culture Dev, Cambridge Ctr 14, Cambridge, MA 02142 USA
[2] Biogen Idec Inc, Cell Culture Dev, Res Triangle Pk, NC 27709 USA
关键词:
Raman spectroscopy;
cell culture;
multivariate analysis;
predictive modeling;
process analytical technology;
AQUEOUS-SOLUTION;
LACTIC-ACID;
D-GLUCOSE;
FT-MIR;
SPECTRA;
FERMENTATION;
BIOPROCESS;
CHEMOMETRICS;
ETHANOL;
SUBTRACTION;
D O I:
10.1002/btpr.2035
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Multi-component, multi-scale Raman spectroscopy modeling results from a monoclonal antibody producing CHO cell culture process including data from two development scales (3 L, 200 L) and a clinical manufacturing scale environment (2,000 L) are presented. Multivariate analysis principles are a critical component to partial least squares (PLS) modeling but can quickly turn into an overly iterative process, thus a simplified protocol is proposed for addressing necessary steps including spectral preprocessing, spectral region selection, and outlier removal to create models exclusively from cell culture process data without the inclusion of spectral data from chemically defined nutrient solutions or targeted component spiking studies. An array of single-scale and combination-scale modeling iterations were generated to evaluate technology capabilities and model scalability. Analysis of prediction errors across models suggests that glucose, lactate, and osmolality are well modeled. Model strength was confirmed via predictive validation and by examining performance similarity across single-scale and combination-scale models. Additionally, accurate predictive models were attained in most cases for viable cell density and total cell density; however, these components exhibited some scale-dependencies that hindered model quality in cross-scale predictions where only development data was used in calibration. Glutamate and ammonium models were also able to achieve accurate predictions in most cases. However, there are differences in the absolute concentration ranges of these components across the datasets of individual bioreactor scales. Thus, glutamate and ammonium PLS models were forced to extrapolate in cases where models were derived from small scale data only but used in cross-scale applications predicting against manufacturing scale batches. (c) 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:566-577, 2015
引用
收藏
页码:566 / 577
页数:12
相关论文