Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology

被引:5
作者
Han, Yanxin [1 ,2 ]
Sun, Zhongqi [1 ,2 ]
Dou, Tianqi [3 ]
Wang, Jipeng [1 ,2 ]
Li, Zhenhua [1 ,2 ]
Huang, Yuqing [1 ,2 ]
Li, Pengyun [4 ]
Ma, Haiqiang [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[3] China Telecom Res Inst, Beijing 102209, Peoples R China
[4] China Elect Technol Grp Corp, China Acad Elect & Informat Technol, Beijing 100041, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1088/0256-307X/39/7/070301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution (QKD) generates information-theoretical secret keys between two parties based on the physical laws of quantum mechanics. Following the advancement in quantum communication networks, it becomes feasible and economical to combine QKD with classical optical communication through the same fiber using dense wavelength division multiplexing (DWDM) technology. This study proposes a detailed scheme of TF-QKD protocol with DWDM technology and analyzes its performance, considering the influence of quantum channel number and adjacent quantum crosstalk on the secret key rates. The simulation results show that the scheme further increases the secret key rate of TF-QKD and its variants. Therefore, this scheme provides a method for improving the secret key rate for practical quantum networks.
引用
收藏
页数:6
相关论文
共 38 条
[1]  
Bennett C. H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[2]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[3]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[4]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[5]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[6]   Intercore spontaneous Raman scattering impact on quantum key distribution in multicore fiber [J].
Cai, Chun ;
Sun, Yongmei ;
Ji, Yuefeng .
NEW JOURNAL OF PHYSICS, 2020, 22 (08)
[7]   Twin-Field Quantum Key Distribution without Phase Postselection [J].
Cui, Chaohan ;
Yin, Zhen-Qiang ;
Wang, Rong ;
Chen, Wei ;
Wang, Shuang ;
Guo, Guang-Can ;
Han, Zheng-Fu .
PHYSICAL REVIEW APPLIED, 2019, 11 (03)
[8]   Practical challenges in quantum key distribution [J].
Diamanti, Eleni ;
Lo, Hoi-Kwong ;
Qi, Bing ;
Yuan, Zhiliang .
NPJ QUANTUM INFORMATION, 2016, 2
[9]   A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States* [J].
Dou, Tianqi ;
Wang, Jipeng ;
Li, Zhenhua ;
Qu, Wenxiu ;
Yang, Shunyu ;
Sun, Zhongqi ;
Zhou, Fen ;
Han, Yanxin ;
Huang, Yuqing ;
Ma, Haiqiang .
CHINESE PHYSICS LETTERS, 2020, 37 (11)
[10]   Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels [J].
Eriksson, Tobias A. ;
Hirano, Takuya ;
Puttnam, Benjamin J. ;
Rademacher, Georg ;
Luis, Ruben S. ;
Fujiwara, Mikio ;
Namiki, Ryo ;
Awaji, Yoshinari ;
Takeoka, Masahiro ;
Wada, Naoya ;
Sasaki, Masahide .
COMMUNICATIONS PHYSICS, 2019, 2 (1)