A volumish theorem for the Jones polynomial of alternating knots

被引:44
作者
Dasbach, Oliver T. [1 ]
Lin, Xiao-Song [2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
Jones polynomial; hyperbolic volume; alternating knots; volume conjecture;
D O I
10.2140/pjm.2007.231.279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Volume Conjecture claims that the hyperbolic volume of a knot is determined by the colored Jones polynomial. Here we prove a "Volumish Theorem" for alternating knots in terms of the Jones polynomial, rather than the colored Jones polynomial: The ratio of the volume and certain sums of coefficients of the Jones polynomial is bounded from above and from below by constants. Furthermore, we give experimental data on the relation of the growths of the hyperbolic volume and the coefficients of the Jones polynomial, both for alternating and nonalternating knots.
引用
收藏
页码:279 / 291
页数:13
相关论文
共 19 条
[1]  
AGOL I, 2005, ARXIVMATHDG0506338
[2]   On the Melvin-Morton-Rozansky conjecture [J].
BarNatan, D ;
Garoufalidis, S .
INVENTIONES MATHEMATICAE, 1996, 125 (01) :103-133
[3]  
Biggs N., 1993, Algebraic Graph Theory
[4]  
Bollobas B., 1998, GRAD TEXT M, V184, DOI 10.1007/978-1-4612-0619-4_7
[5]   Hyperbolic structures on knot complements [J].
Callahan, PJ ;
Reid, AW .
CHAOS SOLITONS & FRACTALS, 1998, 9 (4-5) :705-738
[6]   The orientable cusped hyperbolic 3-manifolds of minimum volume [J].
Cao, C ;
Meyerhoff, GR .
INVENTIONES MATHEMATICAE, 2001, 146 (03) :451-478
[7]   A proof of the Melvin-Morton conjecture and Feynman diagrams [J].
Chmutov, S .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1998, 7 (01) :23-40
[8]  
Dasbach OT, 1997, EXPT MATH, V6, P51, DOI DOI 10.1080/10586458.1997.10504350
[9]   The first 1,701,936 knots [J].
Hoste, J ;
Thistlethwaite, M ;
Weeks, J .
MATHEMATICAL INTELLIGENCER, 1998, 20 (04) :33-48
[10]  
KAUFFMAN LH, 1987, TOPOLOGY, V26, P395