A decade in review: use of data analytics within the biopharmaceutical sector

被引:24
作者
Banner, Matthew [1 ]
Alosert, Haneen [1 ]
Spencer, Christopher [2 ]
Cheeks, Matthew [2 ]
Farid, Suzanne S. [1 ]
Thomas, Michael [1 ,3 ]
Goldrick, Stephen [1 ]
机构
[1] UCL, Dept Biochem Engn, Gower St, London WC1E 6BT, England
[2] AstraZeneca, Cell Culture Fermentat Sci, BioPharmaceut R&D, Biopharmaceut Dev, Cambridge, England
[3] UCL, London Ctr Nanotechnol, Gordon St, London WC1H 0AH, England
基金
英国生物技术与生命科学研究理事会;
关键词
PARTIAL LEAST-SQUARES; PREDICTION; REGRESSION;
D O I
10.1016/j.coche.2021.100758
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
There are large amounts of data generated within the biopharmaceutical sector. Traditionally, data analysis methods labelled as multivariate data analysis have been the standard statistical technique applied to interrogate these complex data sets. However, more recently there has been a surge in the utilisation of a broader set of machine learning algorithms to further exploit these data. In this article, the adoption of data analysis techniques within the biopharmaceutical sector is evaluated through a review of journal articles and patents published within the last ten years. The papers objectives are to identify the most dominant algorithms applied across different applications areas within the biopharmaceutical sector and to explore whether there is a trend between the size of the data set and the algorithm adopted.
引用
收藏
页数:10
相关论文
共 46 条
  • [41] Identification of nonlinear kinetics of macroscopic bio-reactions using multilinear Gaussian processes
    Wang, Mingliang
    Risuleo, Riccardo Sven
    Jacobsen, Elling W.
    Chotteau, Veronique
    Hjalmarsson, Hakan
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2020, 133
  • [42] Technology outlook for real-time quality attribute and process parameter monitoring in biopharmaceutical development-A review
    Wasalathanthri, Dhanuka P.
    Rehmann, Matthew S.
    Song, Yuanli
    Gu, Yan
    Mi, Luo
    Shao, Chun
    Chemmalil, Letha
    Lee, Jongchan
    Ghose, Sanchayita
    Borys, Michael C.
    Ding, Julia
    Li, Zheng Jian
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (10) : 3182 - 3198
  • [43] PRINCIPAL COMPONENT ANALYSIS
    WOLD, S
    ESBENSEN, K
    GELADI, P
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1987, 2 (1-3) : 37 - 52
  • [44] PLS-regression:: a basic tool of chemometrics
    Wold, S
    Sjöström, M
    Eriksson, L
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2001, 58 (02) : 109 - 130
  • [45] Biological applications of support vector machines
    Yang, ZR
    [J]. BRIEFINGS IN BIOINFORMATICS, 2004, 5 (04) : 328 - 338
  • [46] Ying X., 2019, 2018 INT C COMPUTER, P1168