A decade in review: use of data analytics within the biopharmaceutical sector

被引:24
作者
Banner, Matthew [1 ]
Alosert, Haneen [1 ]
Spencer, Christopher [2 ]
Cheeks, Matthew [2 ]
Farid, Suzanne S. [1 ]
Thomas, Michael [1 ,3 ]
Goldrick, Stephen [1 ]
机构
[1] UCL, Dept Biochem Engn, Gower St, London WC1E 6BT, England
[2] AstraZeneca, Cell Culture Fermentat Sci, BioPharmaceut R&D, Biopharmaceut Dev, Cambridge, England
[3] UCL, London Ctr Nanotechnol, Gordon St, London WC1H 0AH, England
基金
英国生物技术与生命科学研究理事会;
关键词
PARTIAL LEAST-SQUARES; PREDICTION; REGRESSION;
D O I
10.1016/j.coche.2021.100758
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
There are large amounts of data generated within the biopharmaceutical sector. Traditionally, data analysis methods labelled as multivariate data analysis have been the standard statistical technique applied to interrogate these complex data sets. However, more recently there has been a surge in the utilisation of a broader set of machine learning algorithms to further exploit these data. In this article, the adoption of data analysis techniques within the biopharmaceutical sector is evaluated through a review of journal articles and patents published within the last ten years. The papers objectives are to identify the most dominant algorithms applied across different applications areas within the biopharmaceutical sector and to explore whether there is a trend between the size of the data set and the algorithm adopted.
引用
收藏
页数:10
相关论文
共 46 条
[31]   Optimization of Biopharmaceutical Downstream Processes Supported by Mechanistic Models and Artificial Neural Networks [J].
Pirrung, Silvia M. ;
van der Wielen, Luuk A. M. ;
van Beckhoven, Ruud F. W. C. ;
van de Sandt, Emile J. A. X. ;
Eppink, Michel H. M. ;
Ottens, Marcel .
BIOTECHNOLOGY PROGRESS, 2017, 33 (03) :696-707
[32]   Single-cell dispensing and 'real-time' cell classification using convolutional neural networks for higher efficiency in single-cell cloning [J].
Riba, Julian ;
Schoendube, Jonas ;
Zimmermann, Stefan ;
Koltay, Peter ;
Zengerle, Roland .
SCIENTIFIC REPORTS, 2020, 10 (01)
[33]   Machine Learning for Quantitative Finance Applications: A Survey [J].
Rundo, Francesco ;
Trenta, Francesca ;
di Stallo, Agatino Luigi ;
Battiato, Sebastiano .
APPLIED SCIENCES-BASEL, 2019, 9 (24)
[34]   Applying univariate vs. multivariate statistics to investigate therapeutic efficacy in (pre)clinical trials: A Monte Carlo simulation study on the example of a controlled preclinical neurotrauma trial [J].
Todorov, Hristo ;
Searle-White, Emily ;
Gerber, Susanne .
PLOS ONE, 2020, 15 (03)
[35]   Industrial batch process monitoring with limited data [J].
Tulsyan, Aditya ;
Garvin, Christopher ;
Undey, Cenk .
JOURNAL OF PROCESS CONTROL, 2019, 77 :114-133
[36]   Advances in industrial biopharmaceutical batch process monitoring: Machine-learning methods for small data problems [J].
Tulsyan, Aditya ;
Garvin, Christopher ;
Undey, Cenk .
BIOTECHNOLOGY AND BIOENGINEERING, 2018, 115 (08) :1915-1924
[37]  
Verleysen M, 2005, LECT NOTES COMPUT SC, V3512, P758
[38]   Acute toxicities of pharmaceuticals toward green algae. mode of action, biopharmaceutical drug disposition classification system and quantile regression models [J].
Villain, Jonathan ;
Minguez, Laetitia ;
Halm-Lemeille, Marie -Pierre ;
Durrieu, Gilles ;
Bureau, Ronan .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2016, 124 :337-343
[39]   Metabolomic profiling of CHO fed-batch growth phases at 10, 100, and 1,000 L [J].
Vodopivec, Maja ;
Lah, Ljerka ;
Narat, Mojca ;
Curk, Tomaz .
BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (10) :2720-2729
[40]   A roadmap to AI-driven in silico process development: bioprocessing 4.0 in practice [J].
von Stosch, Moritz ;
Portela, Rui M. C. ;
Varsakelis, Christos .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2021, 33