A decade in review: use of data analytics within the biopharmaceutical sector

被引:24
作者
Banner, Matthew [1 ]
Alosert, Haneen [1 ]
Spencer, Christopher [2 ]
Cheeks, Matthew [2 ]
Farid, Suzanne S. [1 ]
Thomas, Michael [1 ,3 ]
Goldrick, Stephen [1 ]
机构
[1] UCL, Dept Biochem Engn, Gower St, London WC1E 6BT, England
[2] AstraZeneca, Cell Culture Fermentat Sci, BioPharmaceut R&D, Biopharmaceut Dev, Cambridge, England
[3] UCL, London Ctr Nanotechnol, Gordon St, London WC1H 0AH, England
基金
英国生物技术与生命科学研究理事会;
关键词
PARTIAL LEAST-SQUARES; PREDICTION; REGRESSION;
D O I
10.1016/j.coche.2021.100758
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
There are large amounts of data generated within the biopharmaceutical sector. Traditionally, data analysis methods labelled as multivariate data analysis have been the standard statistical technique applied to interrogate these complex data sets. However, more recently there has been a surge in the utilisation of a broader set of machine learning algorithms to further exploit these data. In this article, the adoption of data analysis techniques within the biopharmaceutical sector is evaluated through a review of journal articles and patents published within the last ten years. The papers objectives are to identify the most dominant algorithms applied across different applications areas within the biopharmaceutical sector and to explore whether there is a trend between the size of the data set and the algorithm adopted.
引用
收藏
页数:10
相关论文
共 46 条
  • [1] Adadi A., SURVEY DATA EFFICIEN, P2021
  • [2] Artificial Neural Network (ANN)-based Prediction of Depth Filter Loading Capacity for Filter Sizing
    Agarwal, Harshit
    Rathore, Anurag S.
    Hadpe, Sandeep Ramesh
    Alva, Solomon J.
    [J]. BIOTECHNOLOGY PROGRESS, 2016, 32 (06) : 1436 - 1443
  • [3] Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories
    Aksnes, Dag W.
    Langfeldt, Liv
    Wouters, Paul
    [J]. SAGE OPEN, 2019, 9 (01):
  • [4] Alloghani M., 2020, Supervised and Unsupervised Learning for Data Science, P3, DOI [DOI 10.1007/978-3-030-22475-2_1, 10.1007/978-3-030-22475-2, 10.1007/978-3-030-22475-2_1]
  • [5] Advanced control strategies for bioprocess chromatography: Challenges and opportunities for intensified processes and next generation products
    Armstrong, Alexander
    Horry, Kieran
    Cui, Tingting
    Hulley, Martyn
    Turner, Richard
    Farid, Suzanne S.
    Goldrick, Stephen
    Bracewell, Daniel G.
    [J]. JOURNAL OF CHROMATOGRAPHY A, 2021, 1639
  • [6] Beckett C., 2018, Pharmaceutical Quality by Design: A Practical Approach, P201, DOI [DOI 10.1002/9781118895238.CH, 10.1002/9781118895238.ch8, DOI 10.1002/9781118895238.CH8]
  • [7] Berry B., 2020, CROSS SCALE MODELLIN
  • [8] In-line monitoring of amino acids in mammalian cell cultures using raman spectroscopy and multivariate chemometrics models
    Bhatia, Hemlata
    Mehdizadeh, Hamidreza
    Drapeau, Denis
    Yoon, Seongkyu
    [J]. ENGINEERING IN LIFE SCIENCES, 2018, 18 (01): : 55 - 61
  • [9] Selective protein quantification for preparative chromatography using variable pathlength UV/Vis spectroscopy and partial least squares regression
    Brestrich, Nina
    Ruedt, Matthias
    Buechler, Daniel
    Hubbuch, Juergen
    [J]. CHEMICAL ENGINEERING SCIENCE, 2018, 176 : 157 - 164
  • [10] User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine
    Chen, Fudi
    Li, Hao
    Xu, Zhihan
    Hou, Shixia
    Yang, Dazuo
    [J]. ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2015, 18 (04): : 273 - 280