The bicomplex quantum harmonic oscillator

被引:12
作者
Lavoie, R. Gervais [1 ]
Marchildon, L. [1 ]
Rochon, D. [2 ]
机构
[1] Univ Quebec, Dept Phys, Trois Rivieres, PQ G9A 5H7, Canada
[2] Univ Quebec, Dept Math & Informat, Trois Rivieres, PQ G9A 5H7, Canada
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS | 2010年 / 125卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
MECHANICS;
D O I
10.1393/ncb/i2010-10927-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of the quantum harmonic oscillator is investigated in the framework of bicomplex numbers, which are pairs of complex numbers making up a commutative ring with zero divisors. Starting with the commutator of the bicomplex position and momentum operators, and adapting the algebraic treatment of the standard quantum harmonic oscillator, we find eigenvalues and eigenkets of the bicomplex harmonic oscillator Hamiltonian. We construct an infinite-dimensional bicomplex module from these eigenkets. Turning next to the differential equation approach, we obtain coordinate-basis eigenfunctions of the bicomplex harmonic oscillator Hamiltonian in terms of hyperbolic Hermite polynomials.
引用
收藏
页码:1173 / 1192
页数:20
相关论文
共 22 条
[1]  
Adler SL., 1995, QUATERNIONIC QUANTUM
[2]   ABSOLUTE VALUED REAL ALGEBRAS [J].
ALBERT, AA .
ANNALS OF MATHEMATICS, 1947, 48 (02) :495-501
[3]   The logic of quantum mechanics [J].
Birkhoff, G ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1936, 37 :823-843
[4]   Characterizing quantum theory in terms of information-theoretic constraints [J].
Clifton, R ;
Bub, J ;
Halvorson, H .
FOUNDATIONS OF PHYSICS, 2003, 33 (11) :1561-1591
[5]  
Dirac P A M, 1967, PRINCIPLES QUANTUM M, V4th
[6]   The solution of the problem of the simple oscillator by a combination of the Schroedinger and the Lanczos theories [J].
Eckart, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1926, 12 :473-476
[7]  
FUCHS CA, 2002, QUANTUM THEORY RECON, P463
[8]  
Guenin M., 1961, HELVETICA PHYS ACTA, V34, P621
[9]   Quantum-theoretical reinterpretation of kinematic and mechanical connections [J].
Heisenberg, W .
ZEITSCHRIFT FUR PHYSIK, 1925, 33 :879-893
[10]   Duplex numbers, diffusion systems, and generalized quantum mechanics [J].
Kocik, J .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (08) :2221-2230