New Bounds for Restricted Isometry Constants

被引:156
作者
Cai, T. Tony [1 ]
Wang, Lie [2 ]
Xu, Guangwu [3 ]
机构
[1] Univ Penn, Dept Stat, Wharton Sch, Philadelphia, PA 19140 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Univ Wisconsin, Dept Elect Engn & Comp Sci, Milwaukee, WI 53211 USA
基金
美国国家科学基金会;
关键词
Compressed sensing; l(1) minimization; restricted isometry property; sparse signal recovery; STABLE RECOVERY; SIGNAL RECOVERY; SPARSE SIGNALS;
D O I
10.1109/TIT.2010.2054730
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses new bounds for restricted isometry constants in compressed sensing. Let Phi be an n x p real matrix and k be a positive integer with k <= n. One of the main results of this paper shows that if the restricted isometry constant delta(k) of Phi satisfies delta(k) < 0.307 then k-sparse signals are guaranteed to be recovered exactly via l(1) minimization when no noise is present and k-sparse signals can be estimated stably in the noisy case. It is also shown that the bound cannot be substantially improved. An explicit example is constructed in which delta(k) = k-1/2k-1 < 0.5, but it is impossible to recover certain k-sparse signals.
引用
收藏
页码:4388 / 4394
页数:7
相关论文
共 15 条
  • [1] A Simple Proof of the Restricted Isometry Property for Random Matrices
    Baraniuk, Richard
    Davenport, Mark
    DeVore, Ronald
    Wakin, Michael
    [J]. CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) : 253 - 263
  • [2] Shifting Inequality and Recovery of Sparse Signals
    Cai, T. Tony
    Wang, Lie
    Xu, Guangwu
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1300 - 1308
  • [3] On Recovery of Sparse Signals Via l1 Minimization
    Cai, T. Tony
    Xu, Guangwu
    Zhang, Jun
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) : 3388 - 3397
  • [4] Stable Recovery of Sparse Signals and an Oracle Inequality
    Cai, Tony Tony
    Wang, Lie
    Xu, Guangwu
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (07) : 3516 - 3522
  • [5] Decoding by linear programming
    Candes, EJ
    Tao, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) : 4203 - 4215
  • [6] CANDES EJ, 1946, COMPUTE RENDUS ACA 1, V346, P589
  • [7] Candes E, 2007, ANN STAT, V35, P2313, DOI 10.1214/009053606000001523
  • [8] Near-optimal signal recovery from random projections: Universal encoding strategies?
    Candes, Emmanuel J.
    Tao, Terence
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) : 5406 - 5425
  • [9] Stable signal recovery from incomplete and inaccurate measurements
    Candes, Emmanuel J.
    Romberg, Justin K.
    Tao, Terence
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) : 1207 - 1223
  • [10] Davies M. E., IEEE T INF IN PRESS