On Weighted Compactness of Commutators Related with Schrodinger Operators

被引:3
|
作者
He, Qian Jun [1 ]
Li, Peng Tao [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
Commutators; compactness; Schrodinger operators; weight functions; INTEGRAL-OPERATORS; NORM INEQUALITIES; HOMOGENEOUS TYPE; BOUNDEDNESS; SPACES;
D O I
10.1007/s10114-022-1081-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L = -Delta+ V be a Schrodinger operator, where Delta is the Laplacian operator on R-d (d >= 3), while the nonnegative potential V belongs to the reverse Holder class B-q,B- q > d/2. In this paper, we study weighted compactness of commutators of some Schrodinger operators, which include Riesz transforms, standard Calderon-Zygmund operators and Littlewood-Paley functions. These results substantially generalize some well-known results.
引用
收藏
页码:1015 / 1040
页数:26
相关论文
共 50 条
  • [41] A revisit on the compactness of commutators
    Guo, Weichao
    Wu, Huoxiong
    Yang, Dongyong
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (06): : 1667 - 1697
  • [42] Two-weighted inequalities for maximal operators related to Schrodinger differential operator
    Amelia Vignatti, Maria
    Salinas, Oscar
    Hartzstein, Silvia
    FORUM MATHEMATICUM, 2020, 32 (06) : 1415 - 1439
  • [43] COMPACTNESS OF COMMUTATORS OF ONE-SIDED SINGULAR INTEGRALS IN WEIGHTED LEBESGUE SPACES
    Garcia Garcia, Victor
    Ortega Salvador, Pedro
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (03) : 655 - 665
  • [44] Variation inequalities related to Schrodinger operators on weighted Morrey spaces
    Zhang, Jing
    OPEN MATHEMATICS, 2019, 17 : 813 - 827
  • [45] Compactness of the commutators generated by Lipschitz functions and fractional integral operators
    T. Nogayama
    Y. Sawano
    Mathematical Notes, 2017, 102 : 687 - 697
  • [46] Compactness of Iterated Commutators on Weighted Bergman Spaces
    刘永民
    NortheasternMathematicalJournal, 1999, (04) : 479 - 485
  • [47] COMPACTNESS FOR HIGHER ORDER COMMUTATORS OF OSCILLATORY SINGULAR INTEGRAL OPERATORS
    Liu, Heping
    Tang, Lin
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (09) : 1137 - 1146
  • [48] Compactness of the commutators generated by Lipschitz functions and fractional integral operators
    Nogayama, T.
    Sawano, Y.
    MATHEMATICAL NOTES, 2017, 102 (5-6) : 687 - 697
  • [49] Compactness of the commutators of homogeneous singular integral operators
    Guo XiaoLi
    Hu GuoEn
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (11) : 2347 - 2362
  • [50] Compactness of Commutators for Singular Integrals on Morrey Spaces
    Chen, Yanping
    Ding, Yong
    Wang, Xinxia
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (02): : 257 - 281