On Weighted Compactness of Commutators Related with Schrodinger Operators

被引:3
作者
He, Qian Jun [1 ]
Li, Peng Tao [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
Commutators; compactness; Schrodinger operators; weight functions; INTEGRAL-OPERATORS; NORM INEQUALITIES; HOMOGENEOUS TYPE; BOUNDEDNESS; SPACES;
D O I
10.1007/s10114-022-1081-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L = -Delta+ V be a Schrodinger operator, where Delta is the Laplacian operator on R-d (d >= 3), while the nonnegative potential V belongs to the reverse Holder class B-q,B- q > d/2. In this paper, we study weighted compactness of commutators of some Schrodinger operators, which include Riesz transforms, standard Calderon-Zygmund operators and Littlewood-Paley functions. These results substantially generalize some well-known results.
引用
收藏
页码:1015 / 1040
页数:26
相关论文
共 54 条
[51]   Compactness of the commutators of intrinsic square functions on weighted Lebesgue spaces [J].
Wu, Xiaomei ;
Yu, Xiao .
TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (02) :728-750
[52]   Compactness of Riesz transform commutator associated with Bessel operators [J].
Xuan Thinh Duong ;
Li, Ji ;
Mao, Suzhen ;
Wu, Huoxiong ;
Yang, Dongyong .
JOURNAL D ANALYSE MATHEMATIQUE, 2018, 135 (02) :639-673
[53]   Weighted Frechet-Kolmogorov Theorem and Compactness of Vector-Valued Multilinear Operators [J].
Xue, Qingying ;
Yabuta, Kozo ;
Yan, Jingquan .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (10) :9891-9914
[54]   Weighted estimates for the iterated commutators of multilinear maximal and fractional type operators [J].
Xue, Qingying .
STUDIA MATHEMATICA, 2013, 217 (02) :97-122