On Weighted Compactness of Commutators Related with Schrodinger Operators

被引:3
作者
He, Qian Jun [1 ]
Li, Peng Tao [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
Commutators; compactness; Schrodinger operators; weight functions; INTEGRAL-OPERATORS; NORM INEQUALITIES; HOMOGENEOUS TYPE; BOUNDEDNESS; SPACES;
D O I
10.1007/s10114-022-1081-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L = -Delta+ V be a Schrodinger operator, where Delta is the Laplacian operator on R-d (d >= 3), while the nonnegative potential V belongs to the reverse Holder class B-q,B- q > d/2. In this paper, we study weighted compactness of commutators of some Schrodinger operators, which include Riesz transforms, standard Calderon-Zygmund operators and Littlewood-Paley functions. These results substantially generalize some well-known results.
引用
收藏
页码:1015 / 1040
页数:26
相关论文
共 54 条
[1]  
[Anonymous], 1993, Harmonic analysis for some Schroedinger type operators
[2]  
[Anonymous], 2011, ARXIV11090100
[3]  
[Anonymous], 1995, Classics in Mathematics
[4]   ON THE BOUNDEDNESS AND COMPACTNESS OF OPERATORS OF HANKEL TYPE [J].
BEATROUS, F ;
LI, SY .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (02) :350-379
[5]   Compactness properties of commutators of bilinear fractional integrals [J].
Benyi, Arpad ;
Damian, Wendolin ;
Moen, Kabe ;
Torres, Rodolfo H. .
MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) :569-582
[6]   Compact Bilinear Commutators: The Weighted Case [J].
Benyi, Arpad ;
Damian, Wendolin ;
Moen, Kabe ;
Torres, Rodolfo H. .
MICHIGAN MATHEMATICAL JOURNAL, 2015, 64 (01) :39-51
[7]  
Bényi A, 2013, P AM MATH SOC, V141, P3609
[8]   Lerner's inequality associated to a critical radius function and applications [J].
Bongioanni, B. ;
Cabral, A. ;
Harboure, E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) :35-55
[9]   Weighted inequalities for commutators of Schrodinger-Riesz transforms [J].
Bongioanni, B. ;
Harboure, E. ;
Salinas, O. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (01) :6-22
[10]   Classes of weights related to Schrodinger operators [J].
Bongioanni, B. ;
Harboure, E. ;
Salinas, O. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :563-579