Estimating canopy LAI and chlorophyll of tropical forest plantation (North India) using Sentinel-2 data

被引:31
|
作者
Padalia, Hitendra [1 ]
Sinha, Sanjiv K. [1 ]
Bhave, Vipul [1 ]
Trivedi, Neeraj K. [1 ]
Kumar, A. Senthil [1 ]
机构
[1] ISRO, Indian Inst Remote Sensing, 4 Kalidas Rd, Dehra Dun 248001, Uttar Pradesh, India
关键词
Clumping index; Empirical regression; Multi-spectral; Red-edge; Vegetation indices; LEAF-AREA INDEX; RADIATIVE-TRANSFER MODEL; REMOTE-SENSING DATA; VEGETATION INDEXES; BIOPHYSICAL PARAMETERS; SPECTRAL REFLECTANCE; OPTICAL-PROPERTIES; GAP FRACTION; GREEN LAI; BAND;
D O I
10.1016/j.asr.2019.09.023
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
With the free and full access to images from Sentinel-2 satellite, the interest to use this data for quantitative retrieval of vegetation parameters is ever-increasing. LAI and chlorophyll are two key variables which are desired for studying productivity, nutrient and stress status of vegetation. Studies carried out on croplands using simulated Sentinel-2 MSI and parametric approach have identified vegetation indices (VIs) with high sensitivity to LAI and chlorophyll. To test how Sentinel-2 red-edge based VIs perform for retrieval of LAI and Chlorophyll of tropical mixed forest canopies, this study has been performed. The field measurements of LAI and chlorophyll content were recorded in a total of 28 ESUs (Elementary Sampling Units) in Bhakra range in the Tarai Central Forest Division, Uttarakhand (India). The in-situ measurements were statistically correlated with Sentinel-2VIs and strength of correlation was validated using Predicted Residual Error Sum of Squares (PRESS) statistic. Field LAI corrected for foliage dumpiness effect improved correlation of VIs with LAI. Among all VIs tested, Normalized Difference Index (NDI) offered highest positive correlation (R-2 = 0.79, p < 0.05) with LAI while Red-Edge Chlorophyll Index (RECI) (R-2 = 0.83, RMSE = 0.24 g/m(2), p < 0.05) and Simple Ratio (SR) 740/705 (R-2 = 0.79, RMSE = 0.27 g/m(2), p < 0.05) were the most closely related to chlorophyll content. VIs with red-edge and NIR combinations offered best results. (C) 2019 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:458 / 469
页数:12
相关论文
共 50 条
  • [21] Estimating Forest Variables for Major Commercial Timber Plantations in Northern Spain Using Sentinel-2 and Ancillary Data
    Novo-Fernandez, Alis
    Lopez-Sanchez, Carlos A.
    Camara-Obregon, Asuncion
    Barrio-Anta, Marcos
    Teijido-Murias, Iyan
    Wang, Guojie
    FORESTS, 2024, 15 (01):
  • [22] Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval
    Verrelst, Jochem
    Pablo Rivera, Juan
    Moreno, Jose
    Camps-Valls, Gustavo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 86 : 157 - 167
  • [23] Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data
    Aguirre-Gutierrez, Jesus
    Rifal, Sami
    Shenkin, Alexander
    Oliveras, Imma
    Bentley, Lisa Patrick
    Svatek, Martin
    Girardin, Cecile A. J.
    Both, Sabine
    Riutta, Terhi
    Berenguer, Erika
    Kissling, W. Daniel
    Bauman, David
    Raab, Nicolas
    Moore, Sam
    Farfan-Rios, William
    Simoes Figueiredo, Axa Emanuelle
    Reis, Simone Matias
    Ndong, Josue Edzang
    Ondo, Fidele Evouna
    Bengone, Natacha N'ssi
    Mihindou, Vianet
    Moraes de Seixas, Marina Maria
    Adu-Bredu, Stephen
    Abemethy, Katharine
    Asner, Gregory P.
    Barlow, Jos
    Burstem, David F. R. P.
    Coomes, David A.
    Cernusak, Lucas A.
    Dargle, Greta C.
    Enquist, Brian J.
    Ewers, Robert M.
    Ferreira, Joice
    Jeffery, Kathryn J.
    Joly, Carlos A.
    Lewis, Simon L.
    Marimon-Junior, Ben Hur
    Martin, Roberta E.
    Morandi, Paulo S.
    Phillips, Oliver L.
    Quesada, Carlos A.
    Salinas, Norma
    Marimon, Beatriz Schwantes
    Silman, Miles
    Teh, Yit Arn
    White, Lee J. T.
    Malhi, Yadvinder
    REMOTE SENSING OF ENVIRONMENT, 2021, 252
  • [24] Modeling Forest Canopy Cover: A Synergistic Use of Sentinel-2, Aerial Photogrammetry Data, and Machine Learning
    Nasiri, Vahid
    Darvishsefat, Ali Asghar
    Arefi, Hossein
    Griess, Verena C.
    Sadeghi, Seyed Mohammad Moein
    Borz, Stelian Alexandru
    REMOTE SENSING, 2022, 14 (06)
  • [25] Estimating tropical forest stand volume using Sentinel-2A imagery
    Nguyen Thi Thanh Huong
    Chau Thi Nhu Quynh
    Nguyen Duc Dinh
    Cao Thi Hoai
    Phan Thi Hang
    Ho Dinh Bao
    Ngo The Son
    Le Quang Dan
    Pham Tuan Anh
    2021 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT DATA SCIENCE TECHNOLOGIES AND APPLICATIONS (IDSTA), 2021, : 130 - 137
  • [26] FOREST ABOVEGROUND BIOMASS ESTIMATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 DATA
    Hoscilo, Agata
    Lewandowska, Aneta
    Ziolkowski, Dariusz
    Sterenczak, Krzysztof
    Lisanczuk, Marek
    Schmullius, Christiane
    Pathe, Carsten
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9026 - 9029
  • [27] Estimating the above ground biomass of winter wheat using the Sentinel-2 data
    Zheng Y.
    Wu B.
    Zhang M.
    Yaogan Xuebao/J. Remote Sens., 2 (318-328): : 318 - 328
  • [28] Retrieval of leaf chlorophyll content using drone imagery and fusion with Sentinel-2 data
    Priyanka
    Srivastava, Prashant K.
    Rawat, Roohi
    SMART AGRICULTURAL TECHNOLOGY, 2023, 6
  • [29] MANGROVE SPECIES MAPPING USING SENTINEL-1 AND SENTINEL-2 DATA IN NORTH VIETNAM
    Tien Dat Pham
    Xia, Junshi
    Baier, Gerald
    Nga Nhu Le
    Yokoya, Naoto
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6102 - 6105
  • [30] The Influence of Data Density and Integration on Forest Canopy Cover Mapping Using Sentinel-1 and Sentinel-2 Time Series in Mediterranean Oak Forests
    Nasiri, Vahid
    Sadeghi, Seyed Mohammad Moein
    Moradi, Fardin
    Afshari, Samaneh
    Deljouei, Azade
    Griess, Verena C.
    Maftei, Carmen
    Borz, Stelian Alexandru
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (08)