Rifampin Resistance Mutations Are Associated with Broad Chemical Remodeling of Mycobacterium tuberculosis

被引:46
作者
Lahiri, Nivedita [1 ,2 ]
Shah, Rupal R. [3 ]
Layre, Emilie [1 ,2 ]
Young, David [1 ,2 ]
Ford, Chris [3 ]
Murray, Megan B. [4 ]
Fortune, Sarah M. [3 ]
Moody, D. Branch [1 ,2 ]
机构
[1] Brigham & Womens Hosp, Div Rheumatol Immunol & Allergy, Smith Bldg,Rm 514,1 Jimmy Fund Way, Boston, MA 02115 USA
[2] Harvard Med Sch, Smith Bldg,Rm 514,1 Jimmy Fund Way, Boston, MA 02115 USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Immunol & Infect Dis, Boston, MA 02115 USA
[4] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
antibiotic resistance; MS; Mycobacterium tuberculosis; siderophore; tuberculosis; lipidomics; multidrug resistance; rifampin; BACTERIAL RNA-POLYMERASE; SULFOLIPID-1; BIOSYNTHESIS; COMPENSATORY MUTATIONS; VIRULENCE; MACROPHAGES; DISCOVERY; IDENTIFICATION; ANTIGENS; REVEALS; PATHWAY;
D O I
10.1074/jbc.M116.716704
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Global control of tuberculosis has become increasingly complicated with the emergence of multidrug-resistant strains of Mycobacterium tuberculosis. First-line treatments are anchored by two antibiotics, rifampin and isoniazid. Most rifampin resistance occurs through the acquisition of missense mutations in the rifampin resistance-determining region, an 81-base pair region encoding the rifampin binding site on the subunit of RNA polymerase (rpoB). Although these mutations confer a survival advantage in the presence of rifampin, they may alter the normal process of transcription, thereby imposing significant fitness costs. Because the downstream biochemical consequences of the rpoB mutations are unknown, we used an organism-wide screen to identify the number and types of lipids changed after rpoB mutation. A new mass spectrometry-based profiling platform systematically compared approximate to 10,000 cell wall lipids in a panel of rifampin-resistant mutants within two genetically distinct strains, CDC1551and W-Beijing. This unbiased lipidomic survey detected quantitative alterations (>2-fold, p < 0.05) in more than 100 lipids in each mutant. By focusing on molecular events that change among most mutants and in both genetic backgrounds, we found that rifampin resistance mutations lead to altered concentrations of mycobactin siderophores and acylated sulfoglycolipids. These findings validate a new organism-wide lipidomic analysis platform for drug-resistant mycobacteria and provide direct evidence for characteristic remodeling of cell wall lipids in rifampin-resistant strains of M. tuberculosis. The specific links between rifampin resistance and named lipid factors provide diagnostic and therapeutic targets that may be exploited to address the problem of drug resistance.
引用
收藏
页码:14248 / 14256
页数:9
相关论文
共 46 条
[1]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[2]   Upregulation of the Phthiocerol Dimycocerosate Biosynthetic Pathway by Rifampin-Resistant, rpoB Mutant Mycobacterium tuberculosis [J].
Bisson, Gregory P. ;
Mehaffy, Carolina ;
Broeckling, Corey ;
Prenni, Jessica ;
Rifat, Dalin ;
Lun, Desmond S. ;
Burgos, Marcos ;
Weissman, Drew ;
Karakousis, Petros C. ;
Dobos, Karen .
JOURNAL OF BACTERIOLOGY, 2012, 194 (23) :6441-6452
[3]   Rapid Molecular Detection of Tuberculosis and Rifampin Resistance [J].
Boehme, Catharina C. ;
Nabeta, Pamela ;
Hillemann, Doris ;
Nicol, Mark P. ;
Shenai, Shubhada ;
Krapp, Fiorella ;
Allen, Jenny ;
Tahirli, Rasim ;
Blakemore, Robert ;
Rustomjee, Roxana ;
Milovic, Ana ;
Jones, Martin ;
O'Brien, Sean M. ;
Persing, David H. ;
Ruesch-Gerdes, Sabine ;
Gotuzzo, Eduardo ;
Rodrigues, Camilla ;
Alland, David ;
Perkins, Mark D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (11) :1005-1015
[4]   Fitness-compensatory mutations in rifampicin-resistant RNA polymerase [J].
Brandis, Gerrit ;
Wrande, Marie ;
Liljas, Lars ;
Hughes, Diarmaid .
MOLECULAR MICROBIOLOGY, 2012, 85 (01) :142-151
[5]   Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis -: Evidence that this lipid is involved in the cell wall permeability barrier [J].
Camacho, LR ;
Constant, P ;
Raynaud, C ;
Lanéelle, MA ;
Triccas, JA ;
Gicquel, B ;
Daffé, M ;
Guilhot, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :19845-19854
[6]   Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids [J].
Cambier, C. J. ;
Takaki, Kevin K. ;
Larson, Ryan P. ;
Hernandez, Rafael E. ;
Tobin, David M. ;
Urdahl, Kevin B. ;
Cosma, Christine L. ;
Ramakrishnan, Lalita .
NATURE, 2014, 505 (7482) :218-+
[7]   Structural mechanism for rifampicin inhibition of bacterial RNA polymerase [J].
Campbell, EA ;
Korzheva, N ;
Mustaev, A ;
Murakami, K ;
Nair, S ;
Goldfarb, A ;
Darst, SA .
CELL, 2001, 104 (06) :901-912
[8]   Molecular Detection of Mutations Associated with First- and Second-Line Drug Resistance Compared with Conventional Drug Susceptibility Testing of Mycobacterium tuberculosis [J].
Campbell, Patricia J. ;
Morlock, Glenn P. ;
Sikes, R. David ;
Dalton, Tracy L. ;
Metchock, Beverly ;
Starks, Angela M. ;
Hooks, Delaina P. ;
Cowan, Lauren S. ;
Plikaytis, Bonnie B. ;
Posey, James E. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2011, 55 (05) :2032-2041
[9]   Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes [J].
Comas, Inaki ;
Borrell, Sonia ;
Roetzer, Andreas ;
Rose, Graham ;
Malla, Bijaya ;
Kato-Maeda, Midori ;
Galagan, James ;
Niemann, Stefan ;
Gagneux, Sebastien .
NATURE GENETICS, 2012, 44 (01) :106-U147
[10]   MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence [J].
Converse, SE ;
Mougous, JD ;
Leavell, MD ;
Leary, JA ;
Bertozzi, CR ;
Cox, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) :6121-6126