Local transport properties, morphology and microstructure of ZnO decorated SiO2 nanoparticles

被引:6
作者
Van Nostrand, Joseph E. [1 ]
Cortez, Rebecca [2 ]
Rice, Zachary P. [3 ]
Cady, Nathaniel C. [3 ]
Bergkvist, Magnus [3 ]
机构
[1] USAF, Res Lab, Informat Directorate, Rome, NY USA
[2] Union Coll, Schenectady, NY 12308 USA
[3] Albany Coll Nanoscale Sci & Engn, Albany, NY USA
基金
美国国家科学基金会;
关键词
GROWTH; SILICA; NANORODS; CLUSTERS; RANGE;
D O I
10.1088/0957-4484/21/41/415602
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report on a novel, surfactant free method for achieving nanocrystalline ZnO decoration of an SiO2 nanoparticle at ambient temperature. The size distributions of the naked and decorated SiO2 nanoparticles are measured by means of dynamic light scattering, and a monodisperse distribution is observed for each. The morphology and microstructure of the nanoparticles are explored using atomic force microscopy and high resolution transmission electron microscopy. Investigation of the optical properties of the ZnO decorated SiO2 nanoparticles shows absorption at 350 nm. This blue shift in absorption as compared to bulk ZnO is shown to be consistent with quantum confinement effects due to the small size of the ZnO nanocrystals. Finally, the local electronic transport properties of the nanoparticles are explored by scanning conductance atomic force microscopy. A memristive hysteresis in the transport properties of the individual ZnO decorated SiO2 nanoparticles is observed. Optical absorption measurements suggest the presence of oxygen vacancies, whose migration and annihilation appear to contribute to the dynamic conduction properties of the ZnO decorated nanoparticles. We believe this to be the first demonstration of a ZnO decorated SiO2 nanoparticle, and this represents a simple yet powerful way of achieving the optical and electrical properties of ZnO in combination with the simplicity of SiO2 synthesis.
引用
收藏
页数:7
相关论文
共 32 条
[1]   Transient visible-UV absorption in beta irradiated silica [J].
Agnello, S ;
Boizot, B .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2003, 322 (1-3) :84-89
[2]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[3]   High-Frequency ZnO Thin-Film Transistors on Si Substrates [J].
Bayraktaroglu, Burhan ;
Leedy, Kevin ;
Neidhard, Robert .
IEEE ELECTRON DEVICE LETTERS, 2009, 30 (09) :946-948
[4]   QUANTUM CRYSTALLITES AND NONLINEAR OPTICS [J].
BRUS, L .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1991, 53 (06) :465-474
[5]   Synthesis and characterization of waxberry-like microstructures ZnO for biosensors [J].
Cao Xia ;
Ning Wang ;
Li Lidong ;
Guo Lin .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 129 (01) :268-273
[6]   Ultrathin ZnO nanorods: facile synthesis, characterization and optical properties [J].
Cao, Xia ;
Wang, Ning ;
Wang, Long .
NANOTECHNOLOGY, 2010, 21 (06)
[7]  
GRISCOM DL, 1991, J CERAM SOC JPN, V99, P899
[8]   Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure [J].
Guo, L ;
Ji, YL ;
Xu, HB ;
Simon, P ;
Wu, ZY .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (50) :14864-14865
[9]   A passive wireless hydrogen surface acoustic wave sensor based on Pt-coated ZnO nanorods [J].
Huang, Ya-Shan ;
Chen, Yung-Yu ;
Wu, Tsung-Tsong .
NANOTECHNOLOGY, 2010, 21 (09)
[10]  
Kerker M, 1969, The Scattering of Light and Other Electromagnetic Radiation, DOI DOI 10.1016/C2013-0-06195-6