MULTIVARIATE SPLINE ESTIMATION AND INFERENCE FOR IMAGE-ON-SCALAR REGRESSION

被引:8
作者
Yu, Shan [1 ]
Wang, Guannan [2 ]
Wang, Li [3 ]
Yang, Lijian [4 ,5 ]
机构
[1] Univ Virginia, Dept Stat, Charlottesville, VA 22904 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Iowa State Univ, Dept Stat & Stat Lab, Ames, IA 50011 USA
[4] Tsinghua Univ, Ctr Stat Sci, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Coefficient maps; confidence corridors; image analysis; multivariate splines; triangulation; VARYING COEFFICIENT MODELS; CONVERGENCE-RATES; NEUROIMAGING DATA;
D O I
10.5705/ss.202019.0188
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by recent analyses of data in biomedical imaging studies, we consider a class of image-on-scalar regression models for imaging responses and scalar predictors. We propose using flexible multivariate splines over triangulations to handle the irregular domain of the objects of interest on the images, as well as other characteristics of images. The proposed estimators of the coefficient functions are proved to be root-n consistent and asymptotically normal under some regularity conditions. We also provide a consistent and computationally efficient estimator of the covariance function. Asymptotic pointwise confidence intervals and data-driven simultaneous confidence corridors for the coefficient functions are constructed. Our method can simultaneously estimate and make inferences on the coefficient functions, while incorporating spatial heterogeneity and spatial correlation. A highly efficient and scalable estimation algorithm is developed. Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed method, which is then applied to the spatially normalized positron emission tomography data of the Alzheimer's Disease Neuroimaging Initiative.
引用
收藏
页码:1463 / 1487
页数:25
相关论文
共 42 条
[1]  
[Anonymous], 2007, Encyclopedia of Mathematics and Its Applications
[2]   Functional linear model [J].
Cardot, H ;
Ferraty, F ;
Sarda, P .
STATISTICS & PROBABILITY LETTERS, 1999, 45 (01) :11-22
[3]  
Cardot H, 2003, STAT SINICA, V13, P571
[4]   Modelling function-valued stochastic processes, with applications to fertility dynamics [J].
Chen, Kehui ;
Delicado, Pedro ;
Muller, Hans-Georg .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (01) :177-196
[5]   Asymptotic properties of penalized spline estimators [J].
Claeskens, Gerda ;
Krivobokova, Tatyana ;
Opsomer, Jean D. .
BIOMETRIKA, 2009, 96 (03) :529-544
[6]   GENE DOSE OF APOLIPOPROTEIN-E TYPE-4 ALLELE AND THE RISK OF ALZHEIMERS-DISEASE IN LATE-ONSET FAMILIES [J].
CORDER, EH ;
SAUNDERS, AM ;
STRITTMATTER, WJ ;
SCHMECHEL, DE ;
GASKELL, PC ;
SMALL, GW ;
ROSES, AD ;
HAINES, JL ;
PERICAKVANCE, MA .
SCIENCE, 1993, 261 (5123) :921-923
[7]   A simultaneous confidence corridor for varying coefficient regression with sparse functional data [J].
Gu, Lijie ;
Wang, Li ;
Haerdle, Wolfgang K. ;
Yang, Lijian .
TEST, 2014, 23 (04) :806-843
[8]   Theory for penalised spline regression [J].
Hall, P ;
Opsomer, JD .
BIOMETRIKA, 2005, 92 (01) :105-118
[9]   Methodology and convergence rates for functional linear regression [J].
Hall, Peter ;
Horowitz, Joel L. .
ANNALS OF STATISTICS, 2007, 35 (01) :70-91
[10]   A SIMPLE BOOTSTRAP METHOD FOR CONSTRUCTING NONPARAMETRIC CONFIDENCE BANDS FOR FUNCTIONS [J].
Hall, Peter ;
Horowitz, Joel .
ANNALS OF STATISTICS, 2013, 41 (04) :1892-1921