Adsorption characteristics of mixtures of egg yolk lipoproteins and whey protein isolate (WPI) were studied in emulsions (20% oil, v/v 0.5% protein, w/v pH 7.0) made with pure triolein or n-tetradecane. Emulsions stabilized by granule lipoproteins (GLP) or low-density lipoproteins (LDL) had smaller particle sizes than emulsions stabilized by WPI. In protein mixtures containing egg yolk lipoproteins and WPI, there was a decrease in particle size with increased concentration of the yolk lipoproteins. The reduction in particle size of emulsions was greater when WPI was mixed with LDL than with GLP, for both n-tetradecane and triolein. Emulsions made with triolein had smaller particle sizes than those made with n-tetradecane, irrespective of the type or ratio of lipoproteins used. Therefore, the protein concentration per unit area of the interface was greater for emulsions containing n-tetradecane than for triolein. In displacement experiments, emulsions made with only WPI were mixed with 0.1 and 0.5% GLP or LDL for a given period of time and the relative concentrations of beta-lactoglobulin and alpha-lactalbumin determined. Displacement of beta-lactoglobulin by LDL increased with time and was greater in emulsions made with n-tetradecane than with triolein. However, displacement of beta-lactoglobulin by GLP was greater in emulsions made with triolein than with n-tetradecane. alpha-lactalbumin was completely displaced from the interface within 1 min of addition of either 0.5% GLP or LDL, whereas addition of 0.1% GLP or LDL resulted only in a partial displacement. The results suggest that egg yolk lipoproteins are more surface active than WPI and that LDL penetrates the n-tetradecane-water interface more than GLP, while GLP penetrates the triolein-water interface more than LDL. (C) 1998 Elsevier Science B.V.