Properties and Bounds of Jensen-Type Functionals via Harmonic Convex Functions

被引:3
|
作者
Mughal, Aqeel Ahmad [1 ]
Almusawa, Hassan [2 ]
Ul Haq, Absar [3 ]
Baloch, Imran Abbas [4 ,5 ]
机构
[1] Univ Lahore, Dept Math & Stat, Lahore, Pakistan
[2] Jazan Univ, Coll Sci, Dept Math, Jazan 45142, Saudi Arabia
[3] Univ Engn & Technol, Dept Nat Sci & Humanities, Narowal Campus, Lahore 54000, Pakistan
[4] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan
[5] Govt Grad Coll Boys Gulberg, Higher Educ Dept, Lahore, Punjab, Pakistan
关键词
HERMITE-HADAMARD TYPE; INEQUALITIES; (S;
D O I
10.1155/2021/5561611
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dragomir introduced the Jensen-type inequality for harmonic convex functions (HCF) and Baloch et al. studied its different variants, such as Jensen-type inequality for harmonic h-convex functions. In this paper, we aim to establish the functional form of inequalities presented by Baloch et al. and prove the superadditivity and monotonicity properties of these functionals. Furthermore, we derive the bound for these functionals under certain conditions. Furthermore, we define more generalized functionals involving monotonic nondecreasing concave function as well as evince superadditivity and monotonicity properties of these generalized functionals.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Continuous refinements of some Jensen-type inequalities via strong convexity with applications
    Ludmila Nikolova
    Lars-Erik Persson
    Sanja Varošanec
    Journal of Inequalities and Applications, 2022
  • [32] Operator Jensen's Type Inequalities for Convex Functions
    Hosseini, M. Shah
    Moradi, H. R.
    Moosavi, B.
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (02)
  • [33] Continuous refinements of some Jensen-type inequalities via strong convexity with applications
    Nikolova, Ludmila
    Persson, Lars-Erik
    Varosanec, Sanja
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [34] Weyl type bounds for harmonic functions
    Tobias H. Colding
    William P. Minicozzi II
    Inventiones mathematicae, 1998, 131 : 257 - 298
  • [35] Weyl type bounds for harmonic functions
    Colding, TH
    Minicozzi, WP
    INVENTIONES MATHEMATICAE, 1998, 131 (02) : 257 - 298
  • [36] BOUNDS HAVING RIEMANN TYPE QUANTUM INTEGRALS VIA STRONGLY CONVEX FUNCTIONS
    Noor, Muhammad Aslam
    Cristescu, Gabriela
    Awan, Muhammad Uzair
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2017, 54 (02) : 221 - 240
  • [37] New improvements of Jensen's type inequalities via 4-convex functions with applications
    Khan, Muhammad Adil
    Khan, Shahid
    Pecaric, Dilda
    Pecaric, Josip
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [38] New improvements of Jensen’s type inequalities via 4-convex functions with applications
    Muhammad Adil Khan
    Shahid Khan
    Ɖilda Pečarić
    Josip Pečarić
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [39] Hermite-Hadamard and Jensen-Type Inequalities via Riemann Integral Operator for a Generalized Class of Godunova-Levin Functions
    Zhang, Xiaoju
    Shabbir, Khurram
    Afzal, Waqar
    Xiao, He
    Lin, Dong
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [40] INTEGRAL INEQUALITIES OF JENSEN TYPE FOR lambda-CONVEX FUNCTIONS
    Dragomir, S. S.
    MATEMATICKI VESNIK, 2016, 68 (01): : 45 - 57