Properties and Bounds of Jensen-Type Functionals via Harmonic Convex Functions

被引:3
|
作者
Mughal, Aqeel Ahmad [1 ]
Almusawa, Hassan [2 ]
Ul Haq, Absar [3 ]
Baloch, Imran Abbas [4 ,5 ]
机构
[1] Univ Lahore, Dept Math & Stat, Lahore, Pakistan
[2] Jazan Univ, Coll Sci, Dept Math, Jazan 45142, Saudi Arabia
[3] Univ Engn & Technol, Dept Nat Sci & Humanities, Narowal Campus, Lahore 54000, Pakistan
[4] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan
[5] Govt Grad Coll Boys Gulberg, Higher Educ Dept, Lahore, Punjab, Pakistan
关键词
HERMITE-HADAMARD TYPE; INEQUALITIES; (S;
D O I
10.1155/2021/5561611
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dragomir introduced the Jensen-type inequality for harmonic convex functions (HCF) and Baloch et al. studied its different variants, such as Jensen-type inequality for harmonic h-convex functions. In this paper, we aim to establish the functional form of inequalities presented by Baloch et al. and prove the superadditivity and monotonicity properties of these functionals. Furthermore, we derive the bound for these functionals under certain conditions. Furthermore, we define more generalized functionals involving monotonic nondecreasing concave function as well as evince superadditivity and monotonicity properties of these generalized functionals.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ON JENSEN-TYPE INEQUALITIES FOR HARMONIC CONVEX FUNCTIONS
    Bosch, Paul
    Rodriguez-Garcia, Jose M.
    Sigarreta, Jose M.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (04): : 1399 - 1413
  • [2] A variant of Jensen-type inequality and related results for harmonic convex functions
    Baloch, Imran Abbas
    Mughal, Aqeel Ahmad
    Chu, Yu-Ming
    Ul Haq, Absar
    De La Sen, Manuel
    AIMS MATHEMATICS, 2020, 5 (06): : 6404 - 6418
  • [3] JENSEN-TYPE INEQUALITIES FOR A CLASS OF CONVEX FUNCTIONS
    Olanipekun, Peter Olamide
    Mogbademu, Adesanmi Alao
    Omotoyinbo, Opeyemi
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (03): : 655 - 666
  • [4] Ostrowski and Jensen-type inequalities via (s, m)-convex functions in the second senseOstrowski and Jensen-type inequalities and generalized convexity
    Miguel José Vivas-Cortez
    Jorge Eliecer Hernández Hernández
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 287 - 302
  • [5] ON A JENSEN-TYPE INEQUALITY FOR F-CONVEX FUNCTIONS
    Adamek, Miroslaw
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1355 - 1364
  • [6] JENSEN-TYPE INEQUALITIES FOR LOG-CONVEX FUNCTIONS
    Khodabakhshian, H.
    Goudarzi, N.
    Safshekan, R.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2023, 92 (02): : 113 - 123
  • [7] Jensen-type inequalities for m-convex functions
    Bosch, Paul
    Quintana, Yamilet
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    OPEN MATHEMATICS, 2022, 20 (01): : 946 - 958
  • [8] Ostrowski and Jensen-type inequalities via (s, m)-convex functions in the second sense Ostrowski and Jensen-type inequalities and generalized convexity
    Jose Vivas-Cortez, Miguel
    Hernandez Hernandez, Jorge Eliecer
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 287 - 302
  • [9] Jensen-Type Inequalities for (h, g; m)-Convex Functions
    Andric, Maja
    MATHEMATICS, 2021, 9 (24)
  • [10] MORE ACCURATE CLASSES OF JENSEN-TYPE INEQUALITIES FOR CONVEX AND OPERATOR CONVEX FUNCTIONS
    Choi, Daeshik
    Krnic, Mario
    Pecaric, Josip
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (02): : 301 - 322