Development of a low stress, silicon-rich silicon nitride film for micromachined sensor applications

被引:2
|
作者
Williams, M [1 ]
Smith, J [1 ]
Mark, J [1 ]
Matamis, G [1 ]
Gogoi, B [1 ]
机构
[1] Motorola MOS5, SPS, Mesa, AZ 85202 USA
来源
MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY VI | 2000年 / 4174卷
关键词
surface micromachining; low stress nitride; silicon rich nitride;
D O I
10.1117/12.396464
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Wet etch processes are important for the production of MEMS devices. Sacrificial oxides are often used to help define polysilicon structures, and these films are often etched using solutions containing hydrofluoric acid. One important consideration is the use of a etch stop which is resistant to HF. In this study, a silicon-rich silicon nitride film was developed for this purpose. Process parameters such as DCS:NH3 ratio, pressure and temperature have been varied in order to create a film that has a low wet etch rate, good cross-wafer and cross-load uniformity, and low conductivity for good isolation resistance. The film is also designed to have a low tensile stress, which should minimize etch rate and also minimize:wafer curvature, which is beneficial for subsequent photo steps. Finally, film characterization using the index of refraction as the primary process control is discussed.
引用
收藏
页码:436 / 442
页数:7
相关论文
共 31 条
  • [21] PROCESS DESIGN FOR PLASMA-ETCHING OF POLYSILICON SILICON-NITRIDE POLYSILICON SANDWICH STRUCTURES FOR SENSOR APPLICATIONS
    LI, YX
    LAROS, M
    SARRO, PM
    FRENCH, PJ
    WOLFFENBUTTEL, RF
    MICROELECTRONIC ENGINEERING, 1993, 20 (04) : 321 - 328
  • [22] On-Chip Nonlinear Optics in Silicon Rich Nitride Photonic Crystal Cavities
    Clementi, Marco
    Kapil, D.
    Gardes, F.
    Galli, M.
    QUANTUM NANO-PHOTONICS, 2018, : 401 - 402
  • [23] Broadband Supercontinuum Generation in the Mid-Infrared Range (0.8 μm-4.5 μm) Using Low Power Dispersion-Engineered LiNbO3 Cladded Silicon-Rich Nitride Waveguide
    Karim, M. R.
    Al Kayed, Nayem
    Rahman, B. M. A.
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 246 - 249
  • [24] Bragg Soliton Compression and Fission on CMOS-Compatible Ultra-Silicon-Rich Nitride
    Sahin, Ezgi
    Blanco-Redondo, Andrea
    Xing, Peng
    Ng, Doris K. T.
    Png, Ching E.
    Tan, Dawn T. H.
    Eggleton, Benjamin J.
    LASER & PHOTONICS REVIEWS, 2019, 13 (08)
  • [25] Ultrafast nonlinear broadening in ultra-short ultra-silicon rich nitride waveguides
    Choi, Ju Won
    Chen, George F. R.
    Ooi, Kelvin J. A.
    Tan, Dawn T. H.
    Ng, Doris K. T.
    2017 OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC) AND PHOTONICS GLOBAL CONFERENCE (PGC), 2017,
  • [26] Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides
    Wang, Ting
    Ng, Doris K. T.
    Ng, Siu-Kit
    Toh, Yeow-Teck
    Chee, A. K. L.
    Chen, George F. R.
    Wang, Qian
    Tan, Dawn T. H.
    LASER & PHOTONICS REVIEWS, 2015, 9 (05) : 498 - 506
  • [27] Engineering in- and out-of-plane stress in PECVD silicon nitride for CMOS-compatible surface micromachining
    Davies, RR
    McNie, ME
    Brunson, KM
    Combes, DJ
    MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY VII, 2001, 4557 : 320 - 328
  • [28] Development of Silicon Nanowire-Based NEMS Absolute Pressure Sensor Through Surface Micromachining
    Zhang, Songsong
    Lou, Liang
    Gu, Yuandong
    IEEE ELECTRON DEVICE LETTERS, 2017, 38 (05) : 653 - 656
  • [29] Si-rich Nitride Waveguides for the formation of Back-End-Of-Line Interfaces with III-V Optical Sources on Silicon
    Ketzaki, D.
    Chatzitheocharis, D.
    Calo, C.
    Caillaud, C.
    Delga, A.
    Vyrsokinos, K.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXIII, 2019, 10921
  • [30] Low-Stress CMOS-Compatible Silicon Carbide Surface-Micromachining Technology-Part I: Process Development and Characterization
    Nabki, Frederic
    Dusatko, Tomas A.
    Vengallatore, Srikar
    El-Gamal, Mourad N.
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2011, 20 (03) : 720 - 729