The regularity of powers of edge ideals

被引:61
作者
Banerjee, Arindam [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22903 USA
关键词
Castelnuovo-Mumford regularity; Powers of edge ideals; Cricket free; MONOMIAL IDEALS; RESOLUTIONS;
D O I
10.1007/s10801-014-0537-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of a special order on the set of minimal monomial generators of powers of edge ideals of arbitrary graphs. Using this order, we find new upper bounds on the regularity of powers of edge ideals of graphs whose complement does not have any induced four cycles.
引用
收藏
页码:303 / 321
页数:19
相关论文
共 13 条
[1]  
[Anonymous], 1990, TOPICS ALGEBRA
[2]   Bounds on the regularity and projective dimension of ideals associated to graphs [J].
Dao, Hailong ;
Huneke, Craig ;
Schweig, Jay .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 38 (01) :37-55
[3]   Restricting linear syzygies: algebra and geometry [J].
Eisenbud, D ;
Green, M ;
Hulek, K ;
Popescu, S .
COMPOSITIO MATHEMATICA, 2005, 141 (06) :1460-1478
[4]  
Hà HT, 2007, CONTEMP MATH, V448, P91
[5]   Splittable ideals and the resolutions of monomial ideals [J].
Ha, Huy Tai ;
Van Tuyl, Adam .
JOURNAL OF ALGEBRA, 2007, 309 (01) :405-425
[6]   Monomial ideals whose powers have a linear resolution [J].
Herzog, J ;
Hibi, T ;
Zheng, XX .
MATHEMATICA SCANDINAVICA, 2004, 95 (01) :23-32
[7]  
Kummini M., 2008, THESIS U KANSAS
[8]   Regularity, depth and arithmetic rank of bipartite edge ideals [J].
Kummini, Manoj .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 30 (04) :429-445
[9]  
Miller E., 2005, Graduate Texts in Mathematics, V227
[10]  
Morey S., 2012, PROGR COMMUTATIVE AL