Vision-Position Multi-Modal Beam Prediction Using Real Millimeter Wave Datasets

被引:45
作者
Charan, Gouranga [1 ]
Osman, Tawfik [1 ]
Hredzak, Andrew [1 ]
Thawdar, Ngwe [2 ]
Alkhateeb, Ahmed [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
[2] Air Force Res Lab, Wright Patterson AFB, OH USA
来源
2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC) | 2022年
关键词
CHALLENGES;
D O I
10.1109/WCNC51071.2022.9771835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Enabling highly-mobile millimeter wave (mmWave) and terahertz (THz) wireless communication applications requires overcoming the critical challenges associated with the large antenna arrays deployed at these systems. In particular, adjusting the narrow beams of these antenna arrays typically incurs high beam training overhead that scales with the number of antennas. To address these challenges, this paper proposes a multi-modal machine learning based approach that leverages positional and visual (camera) data collected from the wireless communication environment for fast beam prediction. The developed framework has been tested on a real-world vehicular dataset comprising practical GPS, camera, and mmWave beam training data. The results show the proposed approach achieves more than approximate to 75% top-1 beam prediction accuracy and close to 100% top-3 beam prediction accuracy in realistic communication scenarios.
引用
收藏
页码:2727 / 2731
页数:5
相关论文
共 14 条
[1]  
Alkhateeb A., 2021, Deepsense 6g: A large-scale real-world multi-modal sensing and communication dataset
[2]   Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems [J].
Alkhateeb, Ahmed ;
Alex, Sam ;
Varkey, Paul ;
Li, Ying ;
Qu, Qi ;
Tujkovic, Djordje .
IEEE ACCESS, 2018, 6 :37328-37348
[3]   Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems [J].
Alkhateeb, Ahmed ;
El Ayach, Omar ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :831-846
[4]  
Alrabeiah M., 2020, PROC IEEE 91 VEH TEC, P1, DOI 10.1109/VTC2020-Spring48590.2020.9129369
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]   An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems [J].
Heath, Robert W., Jr. ;
Gonzalez-Prelcic, Nuria ;
Rangan, Sundeep ;
Roh, Wonil ;
Sayeed, Akbar M. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (03) :436-453
[7]  
imagej.net, about us
[8]   Robust Beam-Tracking for mmWave Mobile Communications [J].
Jayaprakasam, Suhanya ;
Ma, Xiaoxue ;
Choi, Jun Won ;
Kim, Sunwoo .
IEEE COMMUNICATIONS LETTERS, 2017, 21 (12) :2654-2657
[9]  
Khan MS, 2020, I C INF COMM TECH CO, P603, DOI [10.1109/ictc49870.2020.9289508, 10.1109/ICTC49870.2020.9289508]
[10]  
Lahat D, 2015, P IEEE, V103, P1449, DOI 10.1109/JPROC.2015.2460697