Geometric variations and magnetic field effects on electron energy states of InAs/GaAs quantum rings

被引:5
作者
Li, YM [1 ]
Lu, HM
机构
[1] Natl Nano Devices Labs, Hsinchu 300, Taiwan
[2] Natl Chiao Tung Univ, Microelect & Informat Syst Res Ctr, Hsinchu 300, Taiwan
[3] Univ Illinois, Dept Bioengn, Chicago, IL 60612 USA
来源
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS | 2003年 / 42卷 / 4B期
关键词
quantum rings; electron energy states; magnetic field; magnetization; modeling and simulation;
D O I
10.1143/JJAP.42.2404
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study electron energy states in three-dimensional (313) narrow-gap semiconductor quantum rings with ellipsoidal-shape torus (EST) and cut-bottom EST (CBEST) under an applied magnetic field. Our model includes the effective one-electronic-band Hamiltonian, the energy- and position-dependent electron effective mass approximation, and the Ben Daniel-Duke boundary condition. It is solved by the nonlinear iterative method to obtain a "self-consistent" solution numerically. The electron energy dependence on the inner radius, height, and lateral width is investigated for InAs/GaAs quantum rings with EST and CBE T shapes. The height and lateral width play a crucial role in varying the energy spectra of the rings. When the magnetic field is applied on a fixed-size CBEST ring, we find that there is a nonperiodical transition among the lowest electron energy states. Compared with the well-known ID Aharonov-Bohm periodical oscillation, the electron energy levels increase and oscillate nonperiodically when the magnetic field is increased. Our calculation for single-electron magnetization shows that the magnetization is nonperiodical and is a negative function of magnetic field.
引用
收藏
页码:2404 / 2407
页数:4
相关论文
共 20 条
[11]   Energy and coordinate dependent effective mass and confined electron states in quantum dots [J].
Li, YM ;
Voskoboynikov, O ;
Lee, CP ;
Sze, SM .
SOLID STATE COMMUNICATIONS, 2001, 120 (2-3) :79-83
[12]   Computer simulation of electron energy levels for different shape InAs/GaAs semiconductor quantum dots [J].
Li, YM ;
Voskoboynikov, O ;
Lee, CP ;
Sze, SM .
COMPUTER PHYSICS COMMUNICATIONS, 2001, 141 (01) :66-72
[13]   Spectroscopy of nanoscopic semiconductor rings [J].
Lorke, A ;
Luyken, RJ ;
Govorov, AO ;
Kotthaus, JP ;
Garcia, JM ;
Petroff, PM .
PHYSICAL REVIEW LETTERS, 2000, 84 (10) :2223-2226
[14]   Time-domain modelling of negative refractive index material [J].
Paul, J ;
Christopoulos, C ;
Thomas, DWP .
ELECTRONICS LETTERS, 2001, 37 (14) :912-913
[15]   Negative refraction makes a perfect lens [J].
Pendry, JB .
PHYSICAL REVIEW LETTERS, 2000, 85 (18) :3966-3969
[16]   Excitons in self-assembled quantum ring-like structures [J].
Pettersson, H ;
Warburton, RJ ;
Lorke, A ;
Karrai, K ;
Kotthaus, JP ;
Garcia, JM ;
Petroff, PM .
PHYSICA E, 2000, 6 (1-4) :510-513
[17]   Energy structure of quantum rings in a magnetic field -: art. no. 033306 [J].
Planelles, J ;
Jaskólski, W ;
Aliaga, JI .
PHYSICAL REVIEW B, 2002, 65 (03) :1-4
[18]   Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells [J].
Silva, EADE ;
LaRocca, GC ;
Bassani, F .
PHYSICAL REVIEW B, 1997, 55 (24) :16293-16299
[19]   Magnetization, persistent currents, and their relation in quantum rings and dots [J].
Tan, WC ;
Inkson, JC .
PHYSICAL REVIEW B, 1999, 60 (08) :5626-5635
[20]   Semiclassical study of the magnetization of a quantum dot [J].
Tanaka, K .
ANNALS OF PHYSICS, 1998, 268 (01) :31-60