Fourier Series in Banach spaces and Maximal Regularity

被引:0
作者
Arendt, Wolfgang [1 ]
Bu, Shangquan [2 ]
机构
[1] Univ Ulm, Inst Appl Anal, D-89069 Ulm, Germany
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
VECTOR MEASURES, INTEGRATION AND RELATED TOPICS | 2010年 / 201卷
关键词
Operator-valued multiplier; maximal regularity; non-autonomous problems; NONAUTONOMOUS EVOLUTION-EQUATIONS; L-P-REGULARITY; MULTIPLIER THEOREMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Fourier series of functions in L-p(0, 2 pi; X) where X is a Banach space. In particular, we show that the Fourier series of each function in L-p(0, 2 pi; X) converges unconditionally if and only if p = 2 and X is a Hilbert space. For operator-valued multipliers we present the Marcinkiewicz theorem and give applications to differential equations. In particular, we characterize maximal regularity (in a slightly different version than the usual one) by R-sectoriality. Applications to non-autonomous problems are indicated.
引用
收藏
页码:21 / +
页数:3
相关论文
共 18 条
[1]  
Amann H, 2004, ADV NONLINEAR STUD, V4, P417
[2]  
[Anonymous], 1995, Analytic semigroups and optimal regularity in parabolic problems
[3]   The operator-valued Marcinkiewicz multiplier theorem and maximal regularity [J].
Arendt, W ;
Bu, SQ .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :311-343
[4]  
Arendt W., 2001, Vector-Valued Laplace Transforms and Cauchy Problems
[5]   LP-maximal regularity for non-autonomous evolution equations [J].
Arendt, Wolfgang ;
Chill, Ralph ;
Fornaro, Simona ;
Poupaud, Cesar .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (01) :1-26
[6]   LINEAR EVOLUTION OPERATORS ON SPACES OF PERIODIC FUNCTIONS [J].
Arendt, Wolfgang ;
Rabier, Patrick J. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (01) :5-36
[7]  
Burkholder DL, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P233, DOI 10.1016/S1874-5849(01)80008-5
[8]  
Clément P, 2000, STUD MATH, V138, P135
[9]  
Dore G., 1993, Functional analysis and related topics, 1991 (Kyoto), Lecture Notes in Math., V1540, P25
[10]  
Kunstmann PC, 2004, LECT NOTES MATH, V1855, P65