Age-Net: An MRI-Based Iterative Framework for Brain Biological Age Estimation

被引:27
作者
Armanious, Karim [1 ]
Abdulatif, Sherif [1 ]
Shi, Wenbin [1 ]
Salian, Shashank [2 ]
Kustner, Thomas [3 ]
Weiskopf, Daniel [2 ]
Hepp, Tobias [4 ]
Gatidis, Sergios [3 ]
Yang, Bin [1 ]
机构
[1] Univ Stuttgart, Inst Signal Proc & Syst Theory, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Visualizat Res Ctr, D-70569 Stuttgart, Germany
[3] Univ Hosp Tubingen, Dept Diagnost & Intervent Radiol, D-72076 Tubingen, Germany
[4] Max Planck Inst Intelligent Syst, Empir Inference Dept, D-72076 Tubingen, Germany
关键词
Biological age estimation; deep learning; chronological age; magnetic resonance imaging; BIOMARKERS; PATTERN; WRIST; INDEX; HAND;
D O I
10.1109/TMI.2021.3066857
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The concept of biological age (BA) - although important in clinical practice - is hard to grasp mainly due to the lack of a clearly defined reference standard. For specific applications, especially in pediatrics, medical image data are used for BA estimation in a routine clinical context. Beyond this young age group, BA estimation is mostly restricted to whole-body assessment using nonimaging indicators such as blood biomarkers, genetic and cellular data. However, various organ systems may exhibit different aging characteristics due to lifestyle and genetic factors. Thus, a whole-body assessment of the BA does not reflect the deviations of aging behavior between organs. To this end, we propose a new imaging-based framework for organ-specific BA estimation. In this initial study we focus mainly on brain MRI. As a first step, we introduce a chronological age (CA) estimation framework using deep convolutional neural networks (Age-Net). We quantitatively assess the performance of this framework in comparison to existing state-of-the-artCA estimation approaches. Furthermore, we expand upon Age-Net with a novel iterative datacleaning algorithm to segregate atypical-aging patients (BA not approximate to CA) from the given population. We hypothesize that the remaining population should approximate the true BA behavior. We apply the proposed methodology on a brain magnetic resonance image (MRI) dataset containing healthy individuals as well as Alzheimer's patients with different dementia ratings. We demonstrate the correlation between the predicted BAs and the expected cognitive deterioration inAlzheimer's patients. A statisticaland visualization-based analysis has provided evidence regarding the potential and current challenges of the proposed methodology.
引用
收藏
页码:1778 / 1791
页数:14
相关论文
共 74 条
[1]   Telomere length in circulating leukocytes is associated with lung function and disease [J].
Albrecht, Eva ;
Sillanpaa, Elina ;
Karrasch, Stefan ;
Alves, Alexessander Couto ;
Codd, Veryan ;
Hovatta, Iiris ;
Buxton, Jessica L. ;
Nelson, Christopher P. ;
Broer, Linda ;
Hagg, Sara ;
Mangino, Massimo ;
Willemsen, Gonneke ;
Surakka, Ida ;
Ferreira, Manuel A. R. ;
Amin, Najaf ;
Oostra, Ben A. ;
Backmand, Hell M. ;
Peltonen, Markku ;
Sarna, Seppo ;
Rantanen, Taina ;
Sipila, Sarianna ;
Korhonen, Tellervo ;
Madden, Pamela A. F. ;
Gieger, Christian ;
Jorres, Rudolf A. ;
Heinrich, Joachim ;
Behr, Juergen ;
Huber, Rudolf M. ;
Peters, Annette ;
Strauch, Konstantin ;
Wichmann, H. Erich ;
Waldenberger, Melanie ;
Blakemore, Alexandra I. F. ;
de Geus, Eco J. C. ;
Nyholt, Dale R. ;
Henders, Anjali K. ;
Piirila, Paeivi L. ;
Rissanen, Aila ;
Magnusson, Patrik K. E. ;
Vinuela, Ana ;
Pietilainen, Kirsi H. ;
Martin, Nicholas G. ;
Pedersen, Nancy L. ;
Boomsma, Dorret I. ;
Spector, Tim D. ;
van Duijn, Cornelia M. ;
Kaprio, Jaakko ;
Samani, Nilesh J. ;
Jarvelin, Marjo-Riitta ;
Schulz, Holger .
EUROPEAN RESPIRATORY JOURNAL, 2014, 43 (04) :983-992
[2]   A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring [J].
Alpert, Ayelet ;
Pickman, Yishai ;
Leipold, Michael ;
Rosenberg-Hasson, Yael ;
Ji, Xuhuai ;
Gaujoux, Renaud ;
Rabani, Hadas ;
Starosvetsky, Elina ;
Kveler, Ksenya ;
Schaffert, Steven ;
Furman, David ;
Caspi, Oren ;
Rosenschein, Uri ;
Khatri, Purvesh ;
Dekker, Cornelia L. ;
Maecker, Holden T. ;
Davis, Mark M. ;
Shen-Orr, Shai S. .
NATURE MEDICINE, 2019, 25 (03) :487-+
[3]  
[Anonymous], IXI DATASET
[4]  
[Anonymous], Statistical Parameter Mapping (SPM)
[5]  
Armanious K, 2021, EUR SIGNAL PR CONF, P1225, DOI 10.23919/Eusipco47968.2020.9287398
[6]   Unsupervised Medical Image Translation Using Cycle-MedGAN [J].
Armanious, Karim ;
Jiang, Chenming ;
Abdulatif, Sherif ;
Kuestner, Thomas ;
Gatidis, Sergios ;
Yang, Bin .
2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
[7]  
Armanious K, 2019, HELL J NUCL MED, V22, P179, DOI 10.1967/s002449911053
[8]   Sex differences in brain aging and predictors of neurodegeneration in cognitively healthy older adults [J].
Armstrong, Nicole M. ;
An, Yang ;
Beason-Held, Lori ;
Doshi, Jimit ;
Erus, Guray ;
Ferrucci, Luigi ;
Davatzikos, Christos ;
Resnick, Susan M. .
NEUROBIOLOGY OF AGING, 2019, 81 :146-156
[9]   A fast diffeomorphic image registration algorithm [J].
Ashburner, John .
NEUROIMAGE, 2007, 38 (01) :95-113
[10]   Eleven Telomere, Epigenetic Clock, and Biomarker-Composite Quantifications of Biological Aging: Do They Measure the Same Thing? [J].
Belsky, Daniel W. ;
Moffitt, Terrie E. ;
Cohen, Alan A. ;
Corcoran, David L. ;
Levine, Morgan E. ;
Prinz, Joseph A. ;
Schaefer, Jonathan ;
Sugden, Karen ;
Williams, Benjamin ;
Poulton, Richie ;
Caspi, Avshalom .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2018, 187 (06) :1220-1230