Lineability of sets of nowhere analytic functions

被引:14
作者
Bernal-Gonzalez, L. [1 ]
机构
[1] Fac Matemat, Dept Anal Matemat, Seville 41080, Spain
关键词
nowhere analytic function; C-infinity-smooth function; dense linear submanifold; closed linear submanifold; Muntz spaces;
D O I
10.1016/j.jmaa.2007.09.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Although the set of nowhere analytic functions on [0, 1] is clearly not a linear space, we show that the family of such functions in the space of C-infinity-smooth functions contains, except for zero, a dense linear submanifold. The result is even obtained for the smaller class of functions having Pringsheim singularities everywhere. Moreover, in spite of the fact that the space of differentiable functions on [0, 1] contains no closed infinite-dimensional manifold in C([0, 1]), we prove that the space of real C-infinity-smooth functions on (0, 1) does contain such a manifold in C((0, 1)). (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1284 / 1295
页数:12
相关论文
共 35 条
[1]  
[Anonymous], FUND MATH
[2]   Lineability and spaceability of sets of functions on R [J].
Aron, R ;
Gurariy, VI ;
Seoane, JB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :795-803
[3]  
Aron R., 2001, RACSAM REV R ACAD A, V95, P7
[4]   Linearity of sets of strange functions [J].
Bayart, F .
MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (02) :291-303
[5]   Topological and algebraic genericity of divergence and universality [J].
Bayart, F .
STUDIA MATHEMATICA, 2005, 167 (02) :161-181
[6]   Linear structure of weighted holomorphic non-extendibility [J].
Bernal-Gonzalez, L. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 73 (03) :335-344
[7]   Linear Kierst-Szpilrajn theorems [J].
Bernal-González, L .
STUDIA MATHEMATICA, 2005, 166 (01) :55-69
[8]  
Bernal-Gonzalez L., 1987, COLLECT MATH, V38, P117
[9]   DIFFERENTIABLE, NOWHERE ANALYTIC-FUNCTIONS [J].
CATER, FS .
AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (10) :618-624
[10]  
CHRISTENSEN JPR, 1971, PAPERS OPEN HOUSE PR, P26