Densities of Currents on Non-Kahler Manifolds

被引:4
作者
Vu, Duc-Viet [1 ,2 ]
机构
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
[2] Thang Long Inst Math & Appl Sci, Hanoi, Vietnam
关键词
TOPOLOGICAL-ENTROPY; SUPER-POTENTIALS; PERIODIC POINTS; NUMBER;
D O I
10.1093/imrn/rnz270
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a natural generalization of the Dinh-Sibony notion of density currents in the setting where the ambient manifold is not necessarily Kahler. As an application, we show that the algebraic entropy of meromorphic self-maps of compact complex surfaces is a finite bi-meromorphic invariant.
引用
收藏
页码:13282 / 13304
页数:23
相关论文
共 21 条
[1]  
Chirka E. M., 1989, MATH ITS APPL SOVIET, V46
[2]  
Demailly J.-P., COMPLEX ANAL DIFFERE
[3]  
Dinh T.-C., ARXIV181107450
[4]   A superior milestone for the topological entropy of a rational application [J].
Dinh, TC ;
Sibony, N .
ANNALS OF MATHEMATICS, 2005, 161 (03) :1637-1644
[5]   Regularization of currents and entropy [J].
Dinh, TC ;
Sibony, N .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (06) :959-971
[6]   Upper bound for the topological entropy of a meromorphic correspondence [J].
Dinh, Tien-Cuong ;
Sibony, Nessim .
ISRAEL JOURNAL OF MATHEMATICS, 2008, 163 (01) :29-44
[7]   DENSITY OF POSITIVE CLOSED CURRENTS, A THEORY OF NON-GENERIC INTERSECTIONS [J].
Dinh, Tien-Cuong ;
Sibony, Nessim .
JOURNAL OF ALGEBRAIC GEOMETRY, 2018, 27 (03) :497-551
[8]  
Dinh TC, 2018, INVENT MATH, V211, P1, DOI 10.1007/s00222-017-0744-2
[9]   Equidistribution for Meromorphic Maps with Dominant Topological Degree [J].
Dinh, Tien-Cuong ;
Nguyen, Viet-Anh ;
Truong, Tuyen Trung .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (06) :1805-1828
[10]   SUPER-POTENTIALS FOR CURRENTS ON COMPACT KAHLER MANIFOLDS AND DYNAMICS OF AUTOMORPHISMS [J].
Dinh, Tien-Cuong ;
Sibony, Nessim .
JOURNAL OF ALGEBRAIC GEOMETRY, 2010, 19 (03) :473-529