Determination of Three Estrogens in Environmental Water Samples Using Dispersive Liquid-Liquid Microextraction by High-Performance Liquid Chromatography and Fluorescence Detector

被引:18
|
作者
Sousa, Erika M. L. [1 ,2 ]
Dias, Reyla A. S. [3 ]
Sousa, Eliane R. [4 ]
Brito, Natilene M. [3 ]
Freitas, Arlan S. [3 ]
Silva, Gilberto S. [3 ]
Silva, Lanna K. [3 ]
Lima, Diana L. D. [1 ,2 ]
Esteves, Valdemar, I [1 ,2 ]
Silva, Gilmar S. [5 ]
机构
[1] Univ Aveiro, CESAM, Campus Santiago, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Dept Chem, Campus Santiago, P-3810193 Aveiro, Portugal
[3] Fed Inst Educ Sci & Technol Maranhao, Dept Chem, Monte Castelo Campus,Genllio Vargas Ave 04, BR-65030005 Sao Luis, MA, Brazil
[4] Fed Inst Educ Sci & Technol Maranhao, Maracana Campus,Av Curios S-N, BR-65030005 Sao Luis, MA, Brazil
[5] Fed Inst Educ Sci & Technol Goias, Dept Chem, Monrinhos Campus,Highway BR 153,KM 633, BR-75650000 Morrinhos, Go, Brazil
来源
WATER AIR AND SOIL POLLUTION | 2020年 / 231卷 / 04期
关键词
Pharmaceuticals; Estrogens; High-performance liquid chromatography; Dispersive liquid-liquid microextraction; Water; SOLID-PHASE EXTRACTION; ENDOCRINE DISRUPTING CHEMICALS; RIO-DE-JANEIRO; IONIC LIQUID; SEASONAL DISTRIBUTION; WASTE-WATER; QUALITY; CONTAMINATION; ESTUARINE; EXPOSURE;
D O I
10.1007/s11270-020-04552-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work the dispersive liquid-liquid microextraction technique (DLLME) is presented as an important alternative to the classical extraction methods and was used to extract and concentrate estrogens' before its quantification by HPLC in environmental water samples. For the evaluation of the analytical methodology, the following conditions were used: sample volume 8 mL, extraction solvent 200 mu L of chlorobenzene, and dispersive solvent 2000 mu L of acetone. The enrichment factor (EF) was 140 for estrone, 202 for 17 beta-estradiol (E2), and 199 for 17 alpha-ethinylestradiol (EE2). Limit of detection was 20 ng L-1 for E1, 3.1 ng L-1 for E2, and 2.7 ng L-1 for EE2. Repeatability and intermediate reproducibility presented values of relative standard deviation lower than 10%. Finally, recovery tests were performed to evaluate the water matrices' effects on the extraction performance, resulting in recoveries between 76 and 110% in surface water and between 84 and 109% in wastewater.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Dispersive liquid-liquid microextraction combined with high performance liquid chromatography-fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples
    Wu, Qiuhua
    Li, Yunpeng
    Wang, Chun
    Liu, Zhimei
    Zang, Xiaohuan
    Zhou, Xin
    Wang, Zhi
    ANALYTICA CHIMICA ACTA, 2009, 638 (02) : 139 - 145
  • [22] Determination of fluoroquinolones in the environmental samples using vortex assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography
    Selahle, Shirley Kholofelo
    Nomngongo, Philiswa N.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2020, 100 (03) : 282 - 294
  • [23] Determination of Abamectin by Dispersive Liquid-liquid Microextraction Combined with High-Performance Liquid Chromatography in Fruit Juice Samples
    Pashazanousi, Mohammad Bagher
    Mashayekhi, Hossein Ali
    Rezaee, Mohammad
    ORIENTAL JOURNAL OF CHEMISTRY, 2012, 28 (01) : 279 - 286
  • [24] Determination of Profenofos in Water Using Dispersive Liquid-Liquid Microextraction-High Performance Liquid Chromatography
    Shen Ying
    Sun Fu-Sheng
    Dong Jie
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2010, 38 (04) : 551 - 554
  • [25] Determination of Atrazine and Simazine in Environmental Water Samples by Dispersive Liquid–Liquid Microextraction with High Performance Liquid Chromatography
    Qingxiang Zhou
    Long Pang
    Guohong Xie
    Junping Xiao
    Huahua Bai
    Analytical Sciences, 2009, 25 : 73 - 76
  • [26] Trace determination of dichlorodiphenyltrichloroethane and its main metabolites in environmental water samples with dispersive liquid-liquid microextraction in combination with high performance liquid chromatography and ultraviolet detector
    Zhou, Qingxiang
    Pang, Long
    Xiao, Junping
    JOURNAL OF CHROMATOGRAPHY A, 2009, 1216 (39) : 6680 - 6684
  • [27] Extraction and determination of opium alkaloids in urine samples using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography
    Shamsipur, Mojtaba
    Fattahi, Nazir
    JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2011, 879 (28): : 2978 - 2983
  • [28] Dispersive liquid-liquid microextraction based on ionic liquid in combination with high-performance liquid chromatography for the determination of bisphenol A in water
    Li, Yu
    Liu, Jianlin
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2010, 90 (11) : 880 - 890
  • [29] Determination of organophosphorus pesticides in environmental water samples by dispersive liquid-liquid microextraction with solidification of floating organic droplet followed by high-performance liquid chromatography
    Wu, Chunxia
    Liu, Huimin
    Liu, Weihua
    Wu, Qiuhua
    Wang, Chun
    Wang, Zhi
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 397 (06) : 2543 - 2549
  • [30] Dispersive Liquid-Liquid Microextraction Coupled with Gas Chromatography for the Determination of Orthochlorophenol in Environmental Water Samples
    Yang, Yingchun
    Sun, Qian
    Yi, Chongshu
    Ye, Zhixiang
    Mo, Li
    ADVANCES IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-6, 2012, 518-523 : 1379 - 1382