Phase-field crystal method for multiscale microstructures with cubic term

被引:7
作者
Chen, Zhi [1 ]
Hu, Yongbo [1 ]
He, Xu [1 ]
Xiao, Tianning [1 ]
Hao, Limei [2 ]
Ruan, Ying [1 ]
机构
[1] Northwestern Polytech Univ, Sch Phys Sci & Technol, Xian 710129, Peoples R China
[2] Xian Univ Sci & Technol, Sch Sci, Dept Appl Phys, Xian 710054, Peoples R China
基金
中国国家自然科学基金;
关键词
Amplitude phase-field crystal; Dendritic; Pattern formation; Steady-state free energy;
D O I
10.1016/j.mtcomm.2021.102935
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One mode phase-field crystal model is introduced to describe morphological transition in the presence of a cubic term. The application of the field leads to a comprehensive pattern formation with stripe, triangular and liquid phases. Combining with amplitude phase-field crystal model, some steady solution of amplitudes and wave number are easily obtained. The convergence between growth morphology and size domain is investigated. The results indicate that the parameter of cubic term is important to the crystalline phase, especially the triangular phase, in the 2D phase diagrams and it can obtain different crystal shapes by the point from 2D phase diagram. The competition growth of multi grains on larger square computational domain was also investigated. In addition, the method can be extended to other solidification microstructures.
引用
收藏
页数:13
相关论文
共 33 条
[1]   Phase field crystal based prediction of temperature and density dependence of elastic constants through a structural phase transition [J].
Ainsworth, Mark ;
Mao, Zhiping .
PHYSICAL REVIEW B, 2019, 100 (10)
[2]   Deriving phase field crystal theory from dynamical density functional theory: Consequences of the approximations [J].
Archer, Andrew J. ;
Ratliff, Daniel J. ;
Rucklidge, Alastair M. ;
Subramanian, Priya .
PHYSICAL REVIEW E, 2019, 100 (02)
[3]   Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales [J].
Asadi, Ebrahim ;
Zaeem, Mohsen Asle ;
Nouranian, Sasan ;
Baskes, Michael I. .
PHYSICAL REVIEW B, 2015, 91 (02)
[4]   A Review of Quantitative Phase-Field Crystal Modeling of Solid-Liquid Structures [J].
Asadi, Ebrahim ;
Zaeem, Mohsen Asle .
JOM, 2015, 67 (01) :186-201
[5]   Nonlinear elasticity of the phase-field crystal model from the renormalization group [J].
Chan, Pak Yuen ;
Goldenfeld, Nigel .
PHYSICAL REVIEW E, 2009, 80 (06)
[6]   Phase-field crystal model for a diamond-cubic structure [J].
Chan, W. L. ;
Pisutha-Arnond, N. ;
Thornton, K. .
PHYSICAL REVIEW E, 2015, 91 (05)
[7]   Phase-field crystal simulation facet and branch crystal growth [J].
Chen, Zhi ;
Wang, Zhaoyang ;
Gu, Xinrui ;
Chen, Yufei ;
Hao, Limei ;
de Wit, Jos ;
Jin, Kexin .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (05)
[8]   Phase-field crystal modeling and classical density functional theory of freezing [J].
Elder, K. R. ;
Provatas, Nikolas ;
Berry, Joel ;
Stefanovic, Peter ;
Grant, Martin .
PHYSICAL REVIEW B, 2007, 75 (06)
[9]   Honeycomb and triangular domain wall networks in heteroepitaxial systems [J].
Elder, K. R. ;
Chen, Z. ;
Elder, K. L. M. ;
Hirvonen, P. ;
Mkhonta, S. K. ;
Ying, S. -C. ;
Granato, E. ;
Huang, Zhi-Feng ;
Ala-Nissila, T. .
JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (17)
[10]   Patterning of Heteroepitaxial Overlayers from Nano to Micron Scales [J].
Elder, K. R. ;
Rossi, G. ;
Kanerva, P. ;
Sanches, F. ;
Ying, S-C. ;
Granato, E. ;
Achim, C. V. ;
Ala-Nissila, T. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)