Effect of Gold Nanorod Surface Chemistry on Cellular Response

被引:175
作者
Grabinski, Christin [2 ]
Schaeublin, Nicole [2 ]
Wijaya, Andy [3 ]
D'Couto, Helen [1 ]
Baxamusa, Salmaan H. [1 ]
Hamad-Schifferli, Kimberly [1 ,4 ]
Hussain, Saber M. [2 ]
机构
[1] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[2] USAF, Appl Biotechnol Branch, Human Effectiveness Directorate, Res Lab, Wright Patterson AFB, OH 45433 USA
[3] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
nanorods; surface chemistry; cytotoxicity; gene expression; inflammation; cellular uptake; GENE-EXPRESSION; MAMMALIAN-CELLS; NANOPARTICLES; TOXICITY; CYTOTOXICITY; CANCER; SIZE; EXCHANGE; DAMAGE;
D O I
10.1021/nn103476x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gold nanorods (GNRs) stabilized with cetyltrimethylammonium bromide (CTAB) and GNR functionalized via a ligand exchange method with either thiolated polyethylene glycol (PEG(5000)) or mercaptohexadecanoic acid (MHDA) were investigated for their stability in biological media and subsequent toxicological effects to HaCaT cells. GNR-PEG and GNR-MHDA exhibited minimal effects on cell proliferation, whereas GNR-CTAB reduced cell proliferation significantly due to the inherent toxicity of the cationic surfactant to cells. Cell uptake studies indicated relatively IOW uptake for GNR-PEG and high uptake for GNR-MHDA. Reverse transcriptase polymerase chain reaction (RT-PCR) revealed that GNR-PEG induced less significant and unique changes in the transcription levels of 84 genes related to stress and toxicity compared to GNR-MHDA. The results demonstrate that, although cell proliferation was not affected by both particles, there is a significant difference In gene expression in GNR-MHDA exposed cells, suggesting long-term implications for chronic exposure.
引用
收藏
页码:2870 / 2879
页数:10
相关论文
共 48 条
[1]  
Abramoff M.D., 2004, Biophotonics International, V11, P36
[2]   Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging [J].
Agarwal, A. ;
Huang, S. W. ;
O'Donnell, M. ;
Day, K. C. ;
Day, M. ;
Kotov, N. ;
Ashkenazi, S. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (06)
[3]   Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin of Cytotoxicity and Surface Effects [J].
Alkilany, Alaaldin M. ;
Nagaria, Pratik K. ;
Hexel, Cole R. ;
Shaw, Timothy J. ;
Murphy, Catherine J. ;
Wyatt, Michael D. .
SMALL, 2009, 5 (06) :701-708
[4]  
ARIKAWA E, 2007, J BIOMOL TECH, V18, P18
[5]   Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats [J].
Balasubramanian, Suresh K. ;
Jittiwat, Jinattal ;
Manikandan, Jayapal ;
Ong, Choon-Nam ;
Yu, Liya E. ;
Ong, Wei-Yi .
BIOMATERIALS, 2010, 31 (08) :2034-2042
[6]   Interleukin-1 signal transduction [J].
BankersFulbright, JL ;
Kalli, KR ;
McKean, DJ .
LIFE SCIENCES, 1996, 59 (02) :61-83
[7]   Reproducible Comet assay of amorphous silica nanoparticles detects no genotoxicity [J].
Barnes, Clifford A. ;
Elsaesser, Andreas ;
Arkusz, Joanna ;
Smok, Anna ;
Palus, Jadwiga ;
Lesniak, Anna ;
Salvati, Anna ;
Hanrahan, John P. ;
de Jong, Wirn H. ;
Dziubaltowska, Elzbieta ;
Stepnik, Maciej ;
Rydzynski, Konrad ;
McKerr, George ;
Lynch, Iseult ;
Dawson, Kenneth A. ;
Howard, C. Vyvyan .
NANO LETTERS, 2008, 8 (09) :3069-3074
[8]   Rapid Uptake of Gold Nanorods by Primary Human Blood Phagocytes and Immunomodulatory Effects of Surface Chemistry [J].
Bartneck, Matthias ;
Keul, Heidrun A. ;
Singh, Smriti ;
Czaja, Katharina ;
Bornemann, Joerg ;
Bockstaller, Michael ;
Moeller, Martin ;
Zwadlo-Klarwasser, Gabriele ;
Groll, Juergen .
ACS NANO, 2010, 4 (06) :3073-3086
[9]  
Bhabra G, 2009, NAT NANOTECHNOL, V4, P876, DOI [10.1038/NNANO.2009.313, 10.1038/nnano.2009.313]
[10]   Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system [J].
Brychzy, A ;
Rein, T ;
Winklhofer, KF ;
Hartl, FU ;
Young, JC ;
Obermann, WMJ .
EMBO JOURNAL, 2003, 22 (14) :3613-3623