Rank 2 arithmetically Cohen-Macaulay bundles on a nonsingular cubic surface

被引:35
作者
Faenzi, Daniele [1 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
arithmetically Cohen-Macaulay bundles; intermediate cohomology; cubic surfaces; moduli spaces of bundles; matrix factorization; maximal Cohen-Macaulay modules; determinantal; or Pfaffian hypersurfaces;
D O I
10.1016/j.jalgebra.2007.10.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rank 2 indecomposable arithmetically Cohen-Macaulay bundles E on a nonsingular cubic surface X in P-3 are classified, by means of the possible forms taken by the minimal graded free resolution of E over P-3. The admissible values of the Chem classes of E are listed and the vanishing locus of a general section of E is studied. Properties of E such as slope (semi)stability and simplicity are investigated; the number of relevant families is computed together with their dimension. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:143 / 186
页数:44
相关论文
共 38 条
[1]   SOME APPLICATIONS OF BEILINSON THEOREM TO PROJECTIVE SPACES AND QUADRICS [J].
ANCONA, V ;
OTTAVIANI, G .
FORUM MATHEMATICUM, 1991, 3 (02) :157-176
[2]  
[Anonymous], 2000, DOC MATH
[3]   Vector bundles on G(1,4) without intermediate cohomology [J].
Arrondo, E ;
Otero, BG .
JOURNAL OF ALGEBRA, 1999, 214 (01) :128-142
[4]   Vector bundles on fano 3-folds without intermediate cohomology [J].
Arrondo, E ;
Costa, L .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (08) :3899-3911
[5]   Vector bundles with no intermediate cohomology on Fano threefolds of type V22 [J].
Arrondo, Enrique ;
Faenzi, Daniele .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 225 (02) :201-220
[6]   Rank 2 Cohen-Macaulay modules over singularities of type x31+x32+x33+x34 [J].
Baciu, C ;
Ene, V ;
Pfister, G ;
Popescu, D .
JOURNAL OF ALGEBRA, 2005, 292 (02) :447-491
[7]  
Beauville A, 2000, MICH MATH J, V48, P39
[8]  
Beauville A., 1996, LONDON MATH SOC STUD, V34
[9]  
BOHNHORST G, 1992, LECT NOTES MATH, V1507, P39
[10]   COHEN-MACAULAY MODULES ON HYPERSURFACE SINGULARITIES .2. [J].
BUCHWEITZ, RO ;
GREUEL, GM ;
SCHREYER, FO .
INVENTIONES MATHEMATICAE, 1987, 88 (01) :165-182