Land-Cover Mapping of Agricultural Areas Using Machine Learning in Google Earth Engine

被引:3
|
作者
Hastings, Florencia [1 ,2 ]
Fuentes, Ignacio [3 ]
Perez-Bidegain, Mario [1 ]
Navas, Rafael [4 ]
Gorgoglione, Angela [5 ]
机构
[1] Univ Republica, Sch Agron, Av Gral Eugenio Garzon 780, Montevideo, Uruguay
[2] Minist Agr Livestock & Fisheries, Directorate Nat Resources, Av Gral Eugenio Garzon 456, Montevideo, Uruguay
[3] Univ Sydney, Sch Life & Environm Sci, Sydney, NSW 2006, Australia
[4] Inst Nacl Invest Agr, Programa Nacl Invest Prod & Sustentabilidad Ambie, Montevideo, Uruguay
[5] Univ Republica, Sch Engn, Julio Herrera y Reissig 565, Montevideo, Uruguay
来源
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2020, PART IV | 2020年 / 12252卷
关键词
Land-cover map; Supervised classification; Google earth engine; Agricultural region; CLASSIFICATION; CROPLAND;
D O I
10.1007/978-3-030-58811-3_52
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Land-cover mapping is critically needed in land-use planning and policy making. Compared to other techniques, Google Earth Engine (GEE) offers a free cloud of satellite information and high computation capabilities. In this context, this article examines machine learning with GEE for land-cover mapping. For this purpose, a five-phase procedure is applied: (1) imagery selection and pre-processing, (2) selection of the classes and training samples, (3) classification process, (4) post-classification, and (5) validation. The study region is located in the San Salvador basin (Uruguay), which is under agricultural intensification. As a result, the 1990 land-cover map of the San Salvador basin is produced. The new map shows good agreements with past agriculture census and reveals the transformation of grassland to cropland in the period 1990-2018.
引用
收藏
页码:721 / 736
页数:16
相关论文
共 50 条
  • [41] Land use/land cover mapping using deep neural network and sentinel image dataset based on google earth engine in a heavily urbanized area, China
    Chen, Shudan
    Lei, Fan
    Dong, Shengguang
    Zang, Zhuo
    Zhang, Meng
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 16951 - 16972
  • [42] Gobal Forest Cover Mapping using Landsat and Google Earth Engine cloud computing
    Zhang, Xiaomei
    Long, Tengfei
    He, Guojin
    Guo, Yantao
    2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2019,
  • [43] Mapping and Assessing the Dynamics of Shifting Agricultural Landscapes Using Google Earth Engine Cloud Computing, a Case Study in Mozambique
    Mananze, Sosdito
    Pocas, Isabel
    Cunha, Mario
    REMOTE SENSING, 2020, 12 (08)
  • [44] Using Google Earth Engine to detect land cover change: Singapore as a use case
    Sidhu, Nanki
    Pebesma, Edzer
    Camara, Gilberto
    EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01) : 486 - 500
  • [45] Automated Mapping of Wetland Ecosystems: A Study Using Google Earth Engine and Machine Learning for Lotus Mapping in Central Vietnam
    Pham, Huu-Ty
    Nguyen, Hao-Quang
    Le, Khac-Phuc
    Tran, Thi-Phuong
    Ha, Nam-Thang
    WATER, 2023, 15 (05)
  • [46] Categorization of Multiple Crops Using Geospatial Technology, Machine Learning and Google Earth Engine
    Nagendram, P. S.
    Satyanarayana, P.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2024, 37 (09): : 1763 - 1772
  • [47] Spatio-Temporal Land-Use/Land-Cover Change Dynamics in Coastal Plains in Hangzhou Bay Area, China from 2009 to 2020 Using Google Earth Engine
    Zhao, Yinghui
    An, Ru
    Xiong, Naixue
    Ou, Dongyang
    Jiang, Congfeng
    LAND, 2021, 10 (11)
  • [48] Assessment of object-based classification for mapping land use and land cover using google earth
    Selvaraj, Rohini
    Amali, D. Geraldine Bessie
    GLOBAL NEST JOURNAL, 2023, 25 (07): : 131 - 138
  • [49] Seasonal Dynamics in Land Surface Temperature in Response to Land Use Land Cover Changes Using Google Earth Engine
    Feng, Lei
    Hussain, Sajjad
    Pricope, Narcisa G.
    Arshad, Sana
    Tariq, Aqil
    Feng, Li
    Mubeen, Muhammad
    Aslam, Rana Waqar
    Fnais, Mohammed S.
    Li, Wenzhao
    El-Askary, Hesham
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17983 - 17997
  • [50] Assessing temporal snow cover variation in the Sutlej river basin using google earth engine and machine learning models
    Gogineni, Abhilash
    Chintalacheruvu, Madhusudana Rao
    EARTH SCIENCE INFORMATICS, 2024, 17 (01) : 455 - 473