Land-Cover Mapping of Agricultural Areas Using Machine Learning in Google Earth Engine

被引:3
|
作者
Hastings, Florencia [1 ,2 ]
Fuentes, Ignacio [3 ]
Perez-Bidegain, Mario [1 ]
Navas, Rafael [4 ]
Gorgoglione, Angela [5 ]
机构
[1] Univ Republica, Sch Agron, Av Gral Eugenio Garzon 780, Montevideo, Uruguay
[2] Minist Agr Livestock & Fisheries, Directorate Nat Resources, Av Gral Eugenio Garzon 456, Montevideo, Uruguay
[3] Univ Sydney, Sch Life & Environm Sci, Sydney, NSW 2006, Australia
[4] Inst Nacl Invest Agr, Programa Nacl Invest Prod & Sustentabilidad Ambie, Montevideo, Uruguay
[5] Univ Republica, Sch Engn, Julio Herrera y Reissig 565, Montevideo, Uruguay
来源
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2020, PART IV | 2020年 / 12252卷
关键词
Land-cover map; Supervised classification; Google earth engine; Agricultural region; CLASSIFICATION; CROPLAND;
D O I
10.1007/978-3-030-58811-3_52
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Land-cover mapping is critically needed in land-use planning and policy making. Compared to other techniques, Google Earth Engine (GEE) offers a free cloud of satellite information and high computation capabilities. In this context, this article examines machine learning with GEE for land-cover mapping. For this purpose, a five-phase procedure is applied: (1) imagery selection and pre-processing, (2) selection of the classes and training samples, (3) classification process, (4) post-classification, and (5) validation. The study region is located in the San Salvador basin (Uruguay), which is under agricultural intensification. As a result, the 1990 land-cover map of the San Salvador basin is produced. The new map shows good agreements with past agriculture census and reveals the transformation of grassland to cropland in the period 1990-2018.
引用
收藏
页码:721 / 736
页数:16
相关论文
共 50 条
  • [31] Mapping Cropland Abandonment in Mountainous Areas in China Using the Google Earth Engine Platform
    Xu, Suchen
    Xiao, Wu
    Yu, Chen
    Chen, Hang
    Tan, Yongzhong
    REMOTE SENSING, 2023, 15 (04)
  • [32] Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing
    Midekisa, Alemayehu
    Holl, Felix
    Savory, David J.
    Andrade-Pacheco, Ricardo
    Gething, Peter W.
    Bennett, Adam
    Sturrock, Hugh J. W.
    PLOS ONE, 2017, 12 (09):
  • [33] Characterizing land use/land cover change dynamics by an enhanced random forest machine learning model: a Google Earth Engine implementation
    Pande, Chaitanya Baliram
    Srivastava, Aman
    Moharir, Kanak N.
    Radwan, Neyara
    Sidek, Lariyah Mohd
    Alshehri, Fahad
    Pal, Subodh Chandra
    Tolche, Abebe Debele
    Zhran, Mohamed
    ENVIRONMENTAL SCIENCES EUROPE, 2024, 36 (01)
  • [34] Mapping and quantifying agricultural irrigation in heterogeneous landscapes using Google Earth Engine
    Zurqani, H. A.
    Allen, J. S.
    Post, C. J.
    Pellett, C. A.
    Walker, T. C.
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 23
  • [35] BULC-U: Sharpening Resolution and Improving Accuracy of Land-Use/Land-Cover Classifications in Google Earth Engine
    Lee, Jacky
    Cardille, Jeffrey A.
    Coe, Michael T.
    REMOTE SENSING, 2018, 10 (09)
  • [36] Mapping of Flood Areas Using Landsat with Google Earth Engine Cloud Platform
    Mehmood, Hamid
    Conway, Crystal
    Perera, Duminda
    ATMOSPHERE, 2021, 12 (07)
  • [37] Assessing the Effect of Training Sampling Design on the Performance of Machine Learning Classifiers for Land Cover Mapping Using Multi-Temporal Remote Sensing Data and Google Earth Engine
    Shetty, Shobitha
    Gupta, Prasun Kumar
    Belgiu, Mariana
    Srivastav, S. K.
    REMOTE SENSING, 2021, 13 (08)
  • [38] Predicting soil organic matter contents in cultivated land using Google Earth Engine and machine learning
    Guo J.
    Long H.
    He J.
    Mei X.
    Yang G.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (18): : 130 - 137
  • [39] Google Earth Engine-based mapping of land use and land cover for weather forecast models using Landsat 8 imagery
    Ganjirad, Mohammad
    Bagheri, Hossein
    ECOLOGICAL INFORMATICS, 2024, 80
  • [40] ELULC-10, a 10 m European Land Use and Land Cover Map Using Sentinel and Landsat Data in Google Earth Engine
    Mirmazloumi, S. Mohammad
    Kakooei, Mohammad
    Mohseni, Farzane
    Ghorbanian, Arsalan
    Amani, Meisam
    Crosetto, Michele
    Monserrat, Oriol
    REMOTE SENSING, 2022, 14 (13)