Land-Cover Mapping of Agricultural Areas Using Machine Learning in Google Earth Engine

被引:3
|
作者
Hastings, Florencia [1 ,2 ]
Fuentes, Ignacio [3 ]
Perez-Bidegain, Mario [1 ]
Navas, Rafael [4 ]
Gorgoglione, Angela [5 ]
机构
[1] Univ Republica, Sch Agron, Av Gral Eugenio Garzon 780, Montevideo, Uruguay
[2] Minist Agr Livestock & Fisheries, Directorate Nat Resources, Av Gral Eugenio Garzon 456, Montevideo, Uruguay
[3] Univ Sydney, Sch Life & Environm Sci, Sydney, NSW 2006, Australia
[4] Inst Nacl Invest Agr, Programa Nacl Invest Prod & Sustentabilidad Ambie, Montevideo, Uruguay
[5] Univ Republica, Sch Engn, Julio Herrera y Reissig 565, Montevideo, Uruguay
来源
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2020, PART IV | 2020年 / 12252卷
关键词
Land-cover map; Supervised classification; Google earth engine; Agricultural region; CLASSIFICATION; CROPLAND;
D O I
10.1007/978-3-030-58811-3_52
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Land-cover mapping is critically needed in land-use planning and policy making. Compared to other techniques, Google Earth Engine (GEE) offers a free cloud of satellite information and high computation capabilities. In this context, this article examines machine learning with GEE for land-cover mapping. For this purpose, a five-phase procedure is applied: (1) imagery selection and pre-processing, (2) selection of the classes and training samples, (3) classification process, (4) post-classification, and (5) validation. The study region is located in the San Salvador basin (Uruguay), which is under agricultural intensification. As a result, the 1990 land-cover map of the San Salvador basin is produced. The new map shows good agreements with past agriculture census and reveals the transformation of grassland to cropland in the period 1990-2018.
引用
收藏
页码:721 / 736
页数:16
相关论文
共 50 条
  • [21] Land use and land cover classification using machine learning algorithms in google earth engine (vol 16, pg 3057, 2023)
    Arpitha, M.
    Ahmed, S. A.
    Harishnaika, N.
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3075 - 3075
  • [22] Characterization of Land-Cover Changes and Forest-Cover Dynamics in Togo between 1985 and 2020 from Landsat Images Using Google Earth Engine
    Kombate, Arifou
    Folega, Fousseni
    Atakpama, Wouyo
    Dourma, Marra
    Wala, Kperkouma
    Goita, Kalifa
    LAND, 2022, 11 (11)
  • [23] On the Use of Sentinel-2 NDVI Time Series and Google Earth Engine to Detect Land-Use/Land-Cover Changes in Fire-Affected Areas
    Lasaponara, Rosa
    Abate, Nicodemo
    Fattore, Carmen
    Aromando, Angelo
    Cardettini, Gianfranco
    Di Fonzo, Marco
    REMOTE SENSING, 2022, 14 (19)
  • [24] Land Use and Land Cover Classification For Bangladesh 2005 on Google Earth Engine
    Yu, Zhiqi
    Di, Liping
    Tang, Junmei
    Zhang, Chen
    Lin, Li
    Yu, Eugene Genong
    Rahman, Md. Shahinoor
    Gaigalas, Juozas
    Sun, Ziheng
    2018 7TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2018, : 481 - 485
  • [25] Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine
    Huang, Huabing
    Chen, Yanlei
    Clinton, Nicholas
    Wang, Jie
    Wang, Xiaoyi
    Liu, Caixia
    Gong, Peng
    Yang, Jun
    Bai, Yuqi
    Zheng, Yaomin
    Zhu, Zhiliang
    REMOTE SENSING OF ENVIRONMENT, 2017, 202 : 166 - 176
  • [26] Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine
    Farda, N. M.
    5TH GEOINFORMATION SCIENCE SYMPOSIUM 2017 (GSS 2017), 2017, 98
  • [27] Obtaining agricultural land cover in Sentinel-2 satellite images with drone image injection using Random Forest in Google Earth Engine
    Ramirez, M.
    Martinez, L.
    Montilla, M.
    Sarmiento, O.
    Lasso, J.
    Diaz, S.
    REVISTA DE TELEDETECCION, 2020, (56): : 49 - 68
  • [28] Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine
    Ji, Qiulei
    Liang, Wei
    Fu, Bojie
    Zhang, Weibin
    Yan, Jianwu
    Lu, Yihe
    Yue, Chao
    Jin, Zhao
    Lan, Zhiyang
    Li, Siya
    Yang, Pan
    REMOTE SENSING, 2021, 13 (07)
  • [29] Estimating the plausible projections of land use/land cover dynamics in Jhelum and Chenab River basins using satellite imageries and machine learning models in Google Earth Engine
    Zafar, Syeda Maria
    Khan, Junaid Aziz
    Mobeen, Ammara
    Jaafar, Wan Shafrina Wan Mohd
    Kemarau, Ricky Anak
    GEOCARTO INTERNATIONAL, 2025, 40 (01)
  • [30] Improved machine-learning mapping of local climate zones in metropolitan areas using composite Earth observation data in Google Earth Engine
    Chung, Lamuel Chi Hay
    Xie, Jing
    Ren, Chao
    BUILDING AND ENVIRONMENT, 2021, 199