Gaussian Fields Satisfying Simultaneous Operator Scaling Relations

被引:5
作者
Clausel, Marianne [1 ]
机构
[1] Univ Paris 12, F-94010 Creteil, France
来源
RECENT DEVELOPMENTS IN FRACTALS AND RELATED FIELDS | 2010年
关键词
D O I
10.1007/978-0-8176-4888-6_21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this chapter we define a special class of group of self-similar Gaussian fields. We present a harmonizable representation of m-parameter group self-similar Gaussian fields by utilizing the Haar measure of this group. These fields also have stationary rectangular increments according to special directions linked to coreduction of matrices of the considered m-parameter group.
引用
收藏
页码:327 / 341
页数:15
相关论文
共 18 条
[1]  
Ayache A, 2002, POTENTIAL ANAL, V17, P31, DOI 10.1023/A:1015260803576
[2]   Aquifer operator scaling and the effect on solute mixing and dispersion [J].
Benson, DA ;
Meerschaert, MM ;
Baeumer, B ;
Scheffler, HP .
WATER RESOURCES RESEARCH, 2006, 42 (01)
[3]   Operator scaling stable random fields [J].
Bierme, Hermine ;
Meerschaert, Mark M. ;
Scheffler, Hans-Peter .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (03) :312-332
[4]   Anisotropic analysis of some Gaussian models [J].
Bonami, A ;
Estrade, A .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (03) :215-236
[5]  
CLAUSEL M, 2008, THESIS U PARIS 12
[6]   Fractal analysis of surface roughness by using spatial data [J].
Davies, S ;
Hall, P .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :3-29
[7]  
Helgason S., 1979, Differential Geometry, Lie Groups, and Symmetric Spaces
[8]  
HUDSON WN, 1982, T AM MATH SOC, V34, P3
[9]  
Kamont A, 1996, Prob. Math. Stat., V16, P85
[10]  
Kolmogoroff AN, 1940, CR ACAD SCI URSS, V26, P115