Prediction of Daily Photovoltaic Energy Production Using Weather Data and Regression

被引:5
作者
Sarper, Huseyin [1 ,2 ]
Melnykov, Igor [3 ]
Martinez, Lee Anne [4 ]
机构
[1] Old Dominion Univ, Engn Fundamentals Div, Norfolk, VA 23529 USA
[2] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA
[3] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
[4] Colorado State Univ Pueblo, Dept Biol, Pueblo, CO 81001 USA
来源
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME | 2021年 / 143卷 / 06期
关键词
energy prediction; regression; weather data; photovoltaics; renewable energy; daily solar energy; MODELS; OUTPUT; BENCHMARK; FORECAST; SYSTEM;
D O I
10.1115/1.4051262
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents linear regression models to predict the daily energy production of three photovoltaic (PV) systems located in southeast Virginia. The prediction is based on daylight duration, sky index, average relative humidity, and the presence of fog or mist. No other daily weather report components were statistically significant. The proposed method is easy to implement, and it can be used in conjunction with other advanced methods in estimating any given future day's energy production if weather prediction is available. Data from 2013 to 2015 were used in the model construction. Model validation was performed using newer (2016, 2017, 2020, and 2021) data not used in the model construction. Results show good prediction accuracy for a simple methodology, free of system parameters, that can be utilized by ordinary photovoltaic energy users. The majority of the data was collected at the Old Dominion University. The entire data set can be downloaded using the link provided.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Solar energy prediction using linear and non-linear regularization models: A study on AMS (American Meteorological Society) 2013-14 Solar Energy Prediction Contest [J].
Aggarwal, S. K. ;
Saini, L. M. .
ENERGY, 2014, 78 :247-256
[2]  
[Anonymous], SUBSET SELECTION REG, DOI [DOI 10.1007/978-1-4899-3330-0, DOI 10.1007/978-1-4899]
[3]   Review of photovoltaic power forecasting [J].
Antonanzas, J. ;
Osorio, N. ;
Escobar, R. ;
Urraca, R. ;
Martinez-de-Pison, F. J. ;
Antonanzas-Torres, F. .
SOLAR ENERGY, 2016, 136 :78-111
[4]  
Brown, COMMUNICATION
[5]   Energy Prediction of PV Systems with Sun Tracking [J].
Cao, Mengnan ;
Qiu, Yingning ;
Wang, Hao .
RENEWABLE ENERGY AND ENVIRONMENTAL TECHNOLOGY, PTS 1-6, 2014, 448-453 :1491-1496
[6]   Combining Numerical Weather Predictions and Satellite Data for PV Energy Nowcasting [J].
Catalina, Alejandro ;
Alaiz, Carlos M. ;
Dorronsoro, Jose R. .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2020, 11 (03) :1930-1937
[7]   Online 24-h solar power forecasting based on weather type classification using artificial neural network [J].
Chen, Changsong ;
Duan, Shanxu ;
Cai, Tao ;
Liu, Bangyin .
SOLAR ENERGY, 2011, 85 (11) :2856-2870
[8]   Short-term predictability of photovoltaic production over Italy [J].
De Felice, Matteo ;
Petitta, Marcello ;
Ruti, Paolo M. .
RENEWABLE ENERGY, 2015, 80 :197-204
[9]   Error analysis of hybrid photovoltaic power forecasting models: A case study of mediterranean climate [J].
De Giorgi, Maria Grazia ;
Congedo, Paolo Maria ;
Malvoni, Maria ;
Laforgia, Domenico .
ENERGY CONVERSION AND MANAGEMENT, 2015, 100 :117-130
[10]   Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron [J].
Ehsan, R. Muhammad ;
Simon, Sishaj P. ;
Venkateswaran, P. R. .
NEURAL COMPUTING & APPLICATIONS, 2017, 28 (12) :3981-3992