Novel beta-cyclodextrin modified fibers with highly insoluble infraction and temperature enhanced adsorption performance were fabricated via electrospinning technology and followed thermo-crosslinking. The fabricated fibers were characterized by FT-IR, H-1 NMR, TGA and SEM. In the fibers, beta-CD was crosslinked with methacrylic acid (MAA) units to maintain morphologies of fibers and further be utilized for the adsorption of Crystal Violet through complex and electrostatic interaction. In particular, N-isopropyl acrylamide (NIPAM) units were introduced to create thermo-responsively hydrophobic internal cavity within the swelling fibers at high temperatures. Benefiting from that, the maximum adsorption amount could reach to 1253.78 mg g(-1), enhanced by 20% than that at low temperatures. The adsorption data of the fibers fit well the pseudo-second-order model and Langmuir isotherm model. Moreover, the fibers could maintain high regeneration efficiency even after four adsorption-desorption cycles. These results indicated the practical application values of the beta-cyclodextrin modified fibers in the dye wastewater treatment field.