Effects of degree correlations on the explosive synchronization of scale-free networks

被引:33
作者
Sendina-Nadal, I. [1 ,2 ]
Leyva, I. [1 ,2 ]
Navas, A. [2 ]
Villacorta-Atienza, J. A. [2 ]
Almendral, J. A. [1 ,2 ]
Wang, Z. [3 ,4 ,5 ]
Boccaletti, S. [6 ,7 ]
机构
[1] Univ Rey Juan Carlos, Complex Syst Grp, Madrid 28933, Spain
[2] Univ Politecn Madrid, Ctr Biomed Technol, Madrid 28223, Spain
[3] Hong Kong Baptist Univ, Dept Phys, Kowloon Tong, Hong Kong, Peoples R China
[4] Hong Kong Baptist Univ, Ctr Nonlinear Studies, Beijing Hong Kong Singapore Joint Ctr Nonlinear &, Kowloon Tong, Hong Kong, Peoples R China
[5] Hong Kong Baptist Univ, Inst Computat & Theoret Studies, Kowloon Tong, Hong Kong, Peoples R China
[6] CNR, Inst Complex Syst, I-50019 Florence, Italy
[7] Italian Embassy Israel, IL-68125 Tel Aviv, Israel
基金
中国国家自然科学基金;
关键词
EMERGENCE; KURAMOTO; GRAPHS;
D O I
10.1103/PhysRevE.91.032811
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the organization of finite-size, large ensembles of phase oscillators networking via scale-free topologies in the presence of a positive correlation between the oscillators' natural frequencies and the network's degrees. Under those circumstances, abrupt transitions to synchronization are known to occur in growing scale-free networks, while the transition has a completely different nature for static random configurations preserving the same structure-dynamics correlation. We show that the further presence of degree-degree correlations in the network structure has important consequences on the nature of the phase transition characterizing the passage from the phase-incoherent to the phase-coherent network state. While high levels of positive and negative mixing consistently induce a second-order phase transition, moderate values of assortative mixing, such as those ubiquitously characterizing social networks in the real world, greatly enhance the irreversible nature of explosive synchronization in scale-free networks. The latter effect corresponds to a maximization of the area and of the width of the hysteretic loop that differentiates the forward and backward transitions to synchronization.
引用
收藏
页数:6
相关论文
共 45 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
[Anonymous], ARXIV150300954
[3]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]   ASYMPTOTIC NUMBER OF LABELED GRAPHS WITH GIVEN DEGREE SEQUENCES [J].
BENDER, EA ;
CANFIELD, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (03) :296-307
[6]   Strong effects of weak interactions in ecological communities [J].
Berlow, EL .
NATURE, 1999, 398 (6725) :330-+
[7]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[8]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122
[9]   Absence of epidemic threshold in scale-free networks with degree correlations -: art. no. 028701 [J].
Boguñá, M ;
Pastor-Satorras, R ;
Vespignani, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4-028701
[10]   Degree mixing and the enhancement of synchronization in complex weighted networks [J].
Chavez, M. ;
Hwang, D. -U. ;
Martinerie, J. ;
Boccaletti, S. .
PHYSICAL REVIEW E, 2006, 74 (06)