Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or With Recent-Onset Depression A Multimodal, Multisite Machine Learning Analysis

被引:241
作者
Koutsouleris, Nikolaos [1 ]
Kambeitz-Ilankovic, Lana [1 ]
Ruhrmann, Stephan [2 ]
Rosen, Marlene [2 ]
Ruef, Anne [1 ]
Dwyer, Dominic B. [1 ]
Paolini, Marco [1 ]
Chisholm, Katharine [4 ]
Kambeitz, Joseph [1 ]
Haidl, Theresa [2 ]
Schmidt, Andre [5 ]
Gillam, John [6 ,7 ]
Schultze-Lutter, Frauke [8 ]
Falkai, Peter [1 ]
Reiser, Maximilian [9 ]
Riecher-Rossler, Anita [5 ]
Upthegrove, Rachel [3 ,4 ]
Hietala, Jarmo [10 ]
Salokangas, Raimo K. R. [10 ]
Pantelis, Christos [11 ,12 ]
Meisenzahl, Eva [8 ]
Wood, Stephen J. [4 ,6 ,7 ]
Beque, Dirk [13 ]
Brambilla, Paolo [14 ]
Borgwardt, Stefan [5 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Psychiat & Psychotherapy, Nussbaumstr 7, D-80539 Munich, Germany
[2] Univ Cologne, Dept Psychiat & Psychotherapy, Cologne, Germany
[3] Univ Birmingham, Inst Mental Hlth, Birmingham, W Midlands, England
[4] Univ Birmingham, Sch Psychol, Birmingham, W Midlands, England
[5] Univ Basel, Psychiat Univ Hosp, Univ Psychiat Clin, Dept Psychiat, Basel, Switzerland
[6] Natl Ctr Excellence Youth Mental Hlth, Orygen, Melbourne, Vic, Australia
[7] Univ Melbourne, Ctr Youth Mental Hlth, Melbourne, Vic, Australia
[8] Heinrich Heine Univ, Med Fac, Dept Psychiat & Psychotherapy, Dusseldorf, Germany
[9] Ludwig Maximilians Univ Munchen, Dept Radiol, Munich, Germany
[10] Univ Turku, Dept Psychiat, Turku, Finland
[11] Univ Melbourne, Melbourne Neuropsychiat Ctr, Melbourne, Vic, Australia
[12] Melbourne Hlth, Melbourne, Vic, Australia
[13] GE Co, Corp Global Res, Munich, Germany
[14] Univ Milan, Fdn IRCCS CS Granda Osped Maggiore Policlin, Dept Neurosci & Mental Hlth, Milan, Italy
基金
英国医学研究理事会; 欧盟第七框架计划;
关键词
COGNITIVE ENHANCEMENT THERAPY; ULTRA-HIGH-RISK; GRAY-MATTER LOSS; 1ST-EPISODE PSYCHOSIS; EARLY INTERVENTION; DEFAULT MODE; SCHIZOPHRENIA; CONNECTIVITY; BIOMARKERS; DISORDERS;
D O I
10.1001/jamapsychiatry.2018.2165
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
IMPORTANCE Social and occupational impairments contribute to the burden of psychosis and depression. There is a need for risk stratification tools to inform personalized functional-disability preventive strategies for individuals in at-risk and early phases of these illnesses. OBJECTIVE To determine whether predictors associated with social and role functioning can be identified in patients in clinical high-risk (CHR) states for psychosis or with recent-onset depression (ROD) using clinical, imaging-based, and combined machine learning; assess the geographic, transdiagnostic, and prognostic generalizability of machine learning and compare it with human prognostication; and explore sequential prognosis encompassing clinical and combined machine learning. DESIGN, SETTING, AND PARTICIPANTS This multisite naturalistic study followed up patients in CHR states, with ROD, and with recent-onset psychosis, and healthy control participants for 18 months in 7 academic early-recognition services in 5 European countries. Participants were recruited between February 2014 and May 2016, and data were analyzed from April 2017 to January 2018. AIN OUTCOMES AND MEASURES Performance and generalizability of prognostic models. RESULTS A total of 116 individuals in CHR states (mean [SD] age, 24.0 [5.1] years; 58 [50.0%] female) and 120 patients with ROD (mean [SD] age, 26.1 [6.1] years; 65 [54.2%] female) were followed up for a mean (SD) of 329 (142) days. Machine learning predicted the 1-year social-functioning outcomes with a balanced accuracy of 76.9% of patients in CHR states and 66.2% of patients with ROD using clinical baseline data. Balanced accuracy in models using structural neuroimaging was 76.2% in patients in CHR states and 65.0% in patients with ROD, and in combined models, it was 82.7% for CHR states and 70.3% for ROD. Lower functioning before study entry was a transdiagnostic predictor. Medial prefrontal and temporo-parieto-occipital gray matter volume (GMV) reductions and cerebellar and dorsolateral prefrontal GMV increments had predictive value in the CHR group; reduced mediotemporal and increased prefrontal-perisylvian GMV had predictive value in patients with ROD. Poor prognoses were associated with increased risk of psychotic, depressive, and anxiety disorders at follow-up in patients in the CHR state but not ones with ROD. Machine learning outperformed expert prognostication. Adding neuroimaging machine learning to clinical machine learning provided a 1.9-fold increase of prognostic certainty in uncertain cases of patients in CHR states, and a 10.5-fold increase of prognostic certainty for patients with ROD. CONCLUSIONS AND RELEVANCE Precision medicine tools could augment effective therapeutic strategies aiming at the prevention of social functioning impairments in patients with CHR states or with ROD.
引用
收藏
页码:1156 / 1172
页数:17
相关论文
共 76 条
  • [61] Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group
    Schmaal, L.
    Veltman, D. J.
    van Erp, T. G. M.
    Saemann, P. G.
    Frodl, T.
    Jahanshad, N.
    Loehrer, E.
    Tiemeier, H.
    Hofman, A.
    Niessen, W. J.
    Vernooij, M. W.
    Ikram, M. A.
    Wittfeld, K.
    Grabe, H. J.
    Block, A.
    Hegenscheid, K.
    Voelzke, H.
    Hoehn, D.
    Czisch, M.
    Lagopoulos, J.
    Hatton, S. N.
    Hickie, I. B.
    Goya-Maldonado, R.
    Kraemer, B.
    Gruber, O.
    Couvy-Duchesne, B.
    Renteria, M. E.
    Strike, L. T.
    Mills, N. T.
    de Zubicaray, G. I.
    McMahon, K. L.
    Medland, S. E.
    Martin, N. G.
    Gillespie, N. A.
    Wright, M. J.
    Hall, G. B.
    MacQueen, G. M.
    Frey, E. M.
    Carballedo, A.
    van Velzen, L. S.
    van Tol, M. J.
    van der Wee, N. J.
    Veer, I. M.
    Walter, H.
    Schnell, K.
    Schramm, E.
    Normann, C.
    Schoepf, D.
    Konrad, C.
    Zurowski, B.
    [J]. MOLECULAR PSYCHIATRY, 2016, 21 (06) : 806 - 812
  • [62] Improving Prognostic Accuracy in Subjects at Clinical High Risk for Psychosis: Systematic Review of Predictive Models and Meta-analytical Sequential Testing Simulation
    Schmidt, Andre
    Cappucciati, Marco
    Radua, Joaquim
    Rutigliano, Grazia
    Rocchetti, Matteo
    Dell'Osso, Liliana
    Politi, Pierluigi
    Borgwardt, Stefan
    Reilly, Thomas
    Valmaggia, Lucia
    McGuire, Philip
    Fusar-Poli, Paolo
    [J]. SCHIZOPHRENIA BULLETIN, 2017, 43 (02) : 375 - 388
  • [63] EPA guidance on the early intervention in clinical high risk states of psychoses
    Schmidt, S. J.
    Schultze-Lutter, F.
    Schimmelmann, B. G.
    Maric, N. P.
    Salokangas, R. K. R.
    Riecher-Roessler, A.
    van der Gaag, M.
    Meneghelli, A.
    Nordentoft, M.
    Marshall, M.
    Morrison, A.
    Raballo, A.
    Klosterkoetter, J.
    Ruhrmann, S.
    [J]. EUROPEAN PSYCHIATRY, 2015, 30 (03) : 388 - 404
  • [64] New Targets for Prevention of Schizophrenia: Is It Time for Interventions in the Premorbid Phase?
    Seidman, Larry J.
    Nordentoft, Merete
    [J]. SCHIZOPHRENIA BULLETIN, 2015, 41 (04) : 795 - 800
  • [65] Development of the Default Mode and Central Executive Networks across early adolescence: A longitudinal study
    Sherman, Lauren E.
    Rudie, Jeffrey D.
    Pfeifer, Jennifer H.
    Masten, Carrie L.
    McNealy, Kristin
    Dapretto, Mirella
    [J]. DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2014, 10 : 148 - 159
  • [66] Ultra high-risk state for psychosis and non-transition: A systematic review
    Simon, Andor E.
    Velthorst, Eva
    Nieman, Dorien H.
    Linszen, Don
    Umbricht, Daniel
    de Haan, Lieuwe
    [J]. SCHIZOPHRENIA RESEARCH, 2011, 132 (01) : 8 - 17
  • [67] Cognitive Performance and Long-Term Social Functioning in Psychotic Disorder: A Three-Year Follow-Up Study
    Simons, Claudia J. P.
    Bartels-Velthuis, Agna A.
    Pijnenborg, Gerdina H. M.
    [J]. PLOS ONE, 2016, 11 (04):
  • [68] Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research
    Steyerberg, Ewout W.
    Moons, Karel G. M.
    van der Windt, Danielle A.
    Hayden, Jill A.
    Perel, Pablo
    Schroter, Sara
    Riley, Richard D.
    Hemingway, Harry
    Altman, Douglas G.
    [J]. PLOS MEDICINE, 2013, 10 (02)
  • [69] Insular and Hippocampal Gray Matter Volume Reductions in Patients with Major Depressive Disorder
    Stratmann, Mirjam
    Konrad, Carsten
    Kugel, Harald
    Krug, Axel
    Schoening, Sonja
    Ohrmann, Patricia
    Uhlmann, Christina
    Postert, Christian
    Suslow, Thomas
    Heindel, Walter
    Arolt, Volker
    Kircher, Tilo
    Dannlowski, Udo
    [J]. PLOS ONE, 2014, 9 (07):
  • [70] Prediction of transition to psychosis in patients with a clinical high risk for psychosis: a systematic review of methodology and reporting
    Studerus, E.
    Ramyead, A.
    Riecher-Rossler, A.
    [J]. PSYCHOLOGICAL MEDICINE, 2017, 47 (07) : 1163 - 1178