MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia

被引:83
作者
Meng, Ge [1 ]
Jin, Mengmeng [2 ]
Wei, Tianran [3 ,4 ]
Liu, Qian [5 ]
Zhang, Shusheng [6 ]
Peng, Xianyun [7 ]
Luo, Jun [2 ]
Liu, Xijun [3 ,4 ]
机构
[1] Wenzhou Univ, Coll Chem & Mat Engn, Key Lab Carbon Mat Zhejiang Prov, Wenzhou 325035, Peoples R China
[2] Tianjin Univ Technol, Sch Mat Sci & Engn, Inst New Energy Mat & Low Carbon Technol, Tianjin Key Lab Photoelect Mat & Devices, Tianjin 300384, Peoples R China
[3] Guangxi Univ, Sch Resource Environm & Mat, MOE Key Lab New Proc Technol Nonferrous Met & Mat, Nanning 530004, Peoples R China
[4] Guangxi Univ, Sch Resource Environm & Mat, Guangxi Key Lab Proc Nonferrous Met & Featured Ma, Nanning 530004, Peoples R China
[5] Chengdu Univ, Inst Adv Study, Chengdu 610106, Peoples R China
[6] Zhengzhou Univ, Coll Chem, Zhengzhou 450000, Peoples R China
[7] Inst Zhejiang Univ Quzhou, Quzhou 324000, Peoples R China
基金
中国国家自然科学基金;
关键词
ammonia electrosynthesis; green route; molybdenum carbides (MoC) nanocrystals; nitric oxide reduction reaction; high selectivity; NITROGEN-FIXATION; EVOLUTION; WATER; ELECTROSYNTHESIS; CATALYSTS;
D O I
10.1007/s12274-022-4747-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical nitric oxide reduction reaction (NORR) to produce ammonia (NH3) under ambient conditions is a promising alternative to the energy and carbon-intensive Haber-Bosch approach, but its performance is still improved. Herein, molybdenum carbides (MoC) nanocrystals confined by nitrogen-doped carbon nanosheets are first designed as an efficient and durable electrocatalyst for catalyzing the reduction of NO to NH3 with maximal Faradaic efficiency of 89% +/- 2% and a yield rate of 1,350 +/- 15 mu g.h(-1).cm(-2) at the applied potential of -0.8 V vs. reversible hydrogen electrode (RHE) as well as high stable activity with negligible current density and NH3 yield rate decays over a 30 h continue the test. Moreover, as a proof-of-concept of Zn-NO battery, it achieves a peak power density of 1.8 mW.cm(-2) and a large NH3 yield rate of 782 +/- 10 mu g.h(-1).cm(-2), which are comparable to the best-reported results. Theoretical calculations reveal that the MoC(111) has a strong electronic interaction with NO molecules and thus lowering the energy barrier of the potential-determining step and suppressing hydrogen evolution kinetics. This work suggests that Mo-based materials are a powerful platform providing great opportunities to explore highly selective and active catalysts for NH3 production.
引用
收藏
页码:8890 / 8896
页数:7
相关论文
共 56 条
[1]   Promoting Electrochemical CO2 Reduction via Boosting Activation of Adsorbed Intermediates on Iron Single-Atom Catalyst [J].
Chen, Jiayi ;
Wang, Tingting ;
Wang, Xinyue ;
Yang, Bin ;
Sang, Xiahan ;
Zheng, Sixing ;
Yao, Siyu ;
Li, Zhongjian ;
Zhang, Qinghua ;
Lei, Lecheng ;
Xu, Jiang ;
Dai, Liming ;
Hou, Yang .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (21)
[2]   Promoting CO2 Electroreduction Kinetics on Atomically Dispersed Monovalent ZnI Sites by Rationally Engineering Proton-Feeding Centers [J].
Chen, Jiayi ;
Li, Zhongjian ;
Wang, Xinyue ;
Sang, Xiahan ;
Zheng, Sixing ;
Liu, Shoujie ;
Yang, Bin ;
Zhang, Qinghua ;
Lei, Lecheng ;
Dai, Liming ;
Hou, Yang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (07)
[3]   Highly Productive Electrosynthesis of Ammonia by Admolecule-Targeting Single Ag Sites [J].
Chen, Ying ;
Guo, Ruijie ;
Peng, Xianyun ;
Wang, Xiaoqian ;
Liu, Xijun ;
Ren, Junqiang ;
He, Jia ;
Zhuo, Longchao ;
Sun, Jiaqiang ;
Liu, Yifan ;
Wu, Yuen ;
Luo, Jun .
ACS NANO, 2020, 14 (06) :6938-6946
[4]   Dual-phase MoC-Mo2C nanosheets prepared by molten salt electrochemical conversion of CO2 as excellent electrocatalysts for the hydrogen evolution reaction [J].
Chen, Yunfei ;
Gao, Biao ;
Wang, Mingyong ;
Xiao, Xiang ;
Lv, Aijing ;
Jiao, Shuqiang ;
Chu, Paul K. .
NANO ENERGY, 2021, 90
[5]   Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions [J].
Cheng, Hui ;
Ding, Liang-Xin ;
Chen, Gao-Feng ;
Zhang, Lili ;
Xue, Jian ;
Wang, Haihui .
ADVANCED MATERIALS, 2018, 30 (46)
[6]   Achieving 59% faradaic efficiency of the N2 electroreduction reaction in an aqueous Zn-N2 battery by facilely regulating the surface mass transport on metallic copper [J].
Du, Cheng ;
Gao, Yijing ;
Wang, Jianguo ;
Chen, Wei .
CHEMICAL COMMUNICATIONS, 2019, 55 (85) :12801-12804
[7]   Phase Transfer of Mo2C Induced by Boron Doping to Boost Nitrogen Reduction Reaction Catalytic Activity [J].
Fan, Binbin ;
Wang, Haozhi ;
Zhang, Hong ;
Song, Yue ;
Zheng, Xuerong ;
Li, Changjiu ;
Tan, Yeqiang ;
Han, Xiaopeng ;
Deng, Yida ;
Hu, Wenbin .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (20)
[8]   Achieving a Record-High Yield Rate of 120.9 μgNH3 mgcat-1. h-1 for N2 Electrochemical Reduction over Ru Single-Atom Catalysts [J].
Geng, Zhigang ;
Liu, Yan ;
Kong, Xiangdong ;
Li, Pai ;
Li, Kan ;
Liu, Zhongyu ;
Du, Junjie ;
Shu, Miao ;
Si, Rui ;
Zeng, Jie .
ADVANCED MATERIALS, 2018, 30 (40)
[9]   Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions [J].
Guo, Chunxian ;
Ran, Jingrun ;
Vasileff, Anthony ;
Qiao, Shi-Zhang .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (01) :45-56
[10]   Local Modulation of Single-Atomic Mn Sites for Enhanced Ambient Ammonia Electrosynthesis [J].
Han, Lili ;
Hou, Machuan ;
Ou, Pengfei ;
Cheng, Hao ;
Ren, Zhouhong ;
Liang, Zhixiu ;
Boscoboinik, J. Anibal ;
Hunt, Adrian ;
Waluyo, Iradwikanari ;
Zhang, Shusheng ;
Zhuo, Longchao ;
Song, Jun ;
Liu, Xijun ;
Luo, Jun ;
Xin, Huolin L. .
ACS CATALYSIS, 2021, 11 (02) :509-516