Spectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter

被引:3
作者
Yokus, Nihal [1 ]
Koprubasi, Turhan [2 ]
机构
[1] Karamanoglu Mehmetbey Univ, Dept Math, TR-70100 Karaman, Turkey
[2] Kastamonu Univ, Dept Math, TR-37100 Kastamonu, Turkey
关键词
Sturm-Liouville equations; eigenparameter; eigenvalues; spectral singularities; QUADRATIC PENCIL; SCHRODINGER OPERATOR; ADJOINT; EIGENPARAMETER; SINGULARITIES; EXPANSION; EQUATIONS;
D O I
10.1186/s13660-015-0563-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the operator L generated in L-2(R+) by the Sturm-Liouville equation -y '' + q(x)y = lambda(2)y, chi is an element of R+ = [0,infinity), and the boundary condition (alpha(0) + alpha(1)lambda + alpha(2)(2 lambda))y' (0) - (beta(0) + beta(1)lambda + beta(2)lambda(2))y(0) = 0, where q is a complex-valued function, alpha(i), beta(i) is an element of C, i = 0, 1, 2, and lambda is an eigenparameter. Under the conditions q, q' is an element of AC((R)+), lim(x ->infinity) vertical bar q(x)vertical bar + vertical bar q'(x)vertical bar = 0, sup(chi is an element of R+) [e(epsilon)root(chi)vertical bar q ''(chi)vertical bar] < infinity, epsilon > 0, using the uniqueness theorems of analytic functions, we prove that L has a finite number of eigenvalues and spectral singularities with finite multiplicities.
引用
收藏
页数:7
相关论文
共 26 条
[1]   Spectral singularities of the nonhomogeneous Sturm-Liouville equations [J].
Adivar, M ;
Bairamov, E .
APPLIED MATHEMATICS LETTERS, 2002, 15 (07) :825-832
[2]   Quadratic Pencil of Difference Equations: Jost Solutions, Spectrum, and Principal Vectors [J].
Adivar, Murat .
QUAESTIONES MATHEMATICAE, 2010, 33 (03) :305-323
[3]  
Bairamov E, 2001, MATH NACHR, V229, P5, DOI 10.1002/1522-2616(200109)229:1<5::AID-MANA5>3.0.CO
[4]  
2-C
[5]   Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators [J].
Bairamov, E ;
Çelebi, AO .
QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (200) :371-384
[6]   An eigenfunction expansion for a quadratic pencil of a Schrodinger operator with spectral singularities [J].
Bairamov, E ;
Çakar, Ö ;
Krall, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 151 (02) :268-289
[7]   Eigenparameter dependent discrete Dirac equations with spectral singularities [J].
Bairamov, Elgiz ;
Koprubasi, Turhan .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (12) :4216-4220
[8]   Spectral Singularities of Sturm-Liouville Problems with Eigenvalue-Dependent Boundary Conditions [J].
Bairamov, Elgiz ;
Yokus, Nihal .
ABSTRACT AND APPLIED ANALYSIS, 2009,
[9]   Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, II [J].
Binding, PA ;
Browne, PJ ;
Watson, BA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (01) :147-168
[10]   Transformations between Sturm-Liouville problems with eigenvalue dependent and independent boundary conditions [J].
Binding, PA ;
Browne, PJ ;
Watson, BA .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :749-757