Local and Global Stability Analysis of Dengue Disease with Vaccination and Optimal Control

被引:9
作者
Chamnan, Anusit [1 ]
Pongsumpun, Puntani [1 ]
Tang, I-Ming [2 ]
Wongvanich, Napasool [3 ]
机构
[1] King Mongkut's Inst Technol Ladkrabang, Sch Sci, Dept Math, Bangkok 10520, Thailand
[2] Mahidol Univ, Fac Sci, Dept Phys, Bangkok 10400, Thailand
[3] King Mongkuts Inst Technol Ladkrabang, Sch Engn, Dept Instrumentat & Control Engn, Bangkok 10520, Thailand
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
dengue fever; global asymptotically stabilities; local asymptotically stabilities; optimal control; vaccination; AEDES-AEGYPTI; MODEL; TRANSMISSION; FEVER; INFECTION; WOLBACHIA; CULICIDAE; EFFICACY; DYNAMICS; COVID-19;
D O I
10.3390/sym13101917
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dengue fever is a disease that has spread all over the world, including Thailand. Dengue is caused by a virus and there are four distinct serotypes of the virus that cause dengue DENV-1, DENV-2, DENV-3, and DENV-4. The dengue viruses are transmitted by two species of the Aedes mosquitoes, the Aedes aegypti, and the Aedes albopictus. Currently, the dengue vaccine used in Thailand is chimeric yellow tetravalent dengue (CYD-TDV). This research presents optimal control which studies the vaccination only in individuals with a documented past dengue infection (seropositive), regardless of the serotypes of infection causing the initial infection by the disease. The analysis of dengue transmission model is used to establish the local asymptotically stabilities. The property of symmetry in the Lyapunov function an import role in achieving this global asymptotically stabilities. The optimal control systems are shown in numerical solutions and conclusions. The result shows that the control resulted in a significant reduction in the number of infected humans and infected vectors.</p>
引用
收藏
页数:24
相关论文
共 53 条
  • [11] Analysis of a Dengue disease transmission model
    Esteva, L
    Vargas, C
    [J]. MATHEMATICAL BIOSCIENCES, 1998, 150 (02) : 131 - 151
  • [12] Dengue and dengue hemorrhagic fever
    Gubler, DJ
    [J]. CLINICAL MICROBIOLOGY REVIEWS, 1998, 11 (03) : 480 - +
  • [13] Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease
    Hadinegoro, S. R.
    Arredondo-Garcia, J. L.
    Capeding, M. R.
    Deseda, C.
    Chotpitayasunondh, T.
    Dietze, R.
    Ismail, H. I. Hj Muhammad
    Reynales, H.
    Limkittikul, K.
    Rivera-Medina, D. M.
    Tran, H. N.
    Bouckenooghe, A.
    Chansinghakul, D.
    Cortes, M.
    Fanouillere, K.
    Forrat, R.
    Frago, C.
    Gailhardou, S.
    Jackson, N.
    Noriega, F.
    Plennevaux, E.
    Wartel, T. A.
    Zambrano, B.
    Saville, M.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (13) : 1195 - 1206
  • [14] Kalayanarooj Siripen, 2011, Trop Med Health, V39, P83, DOI 10.2149/tmh.2011-S10
  • [15] Dengue infection modeling and its optimal control analysis in East Java']Java, Indonesia
    Khan, Muhammad Altaf
    Fatmawati
    [J]. HELIYON, 2021, 7 (01)
  • [16] Lamwong J., 2021, Curr. Appl. Sci. Technol., V21, P351
  • [17] Lenhart S., 2007, Chapman & Hall/CRC mathematical and computational biology
  • [18] Dynamical Analysis and Optimal Control for a SEIR Model Based on Virus Mutation in WSNs
    Liu, Guiyun
    Chen, Jieyong
    Liang, Zhongwei
    Peng, Zhimin
    Li, Junqiang
    [J]. MATHEMATICS, 2021, 9 (09)
  • [19] Lukes DL, 1982, Differential equations
  • [20] Discrimination between primary and secondary Dengue virus infection by an immunoglobulin G avidity test using a single acute-phase serum sample
    Matheus, S
    Deparis, X
    Labeau, B
    Lelarge, J
    Morvan, J
    Dussart, P
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 2005, 43 (06) : 2793 - 2797