Monotonic independence, monotonic central limit theorem and monotonic law of small numbers

被引:72
作者
Muraki, N [1 ]
机构
[1] Iwate Prefectural Univ, Math Lab, Takizawa, Iwate 0200193, Japan
关键词
D O I
10.1142/S0219025701000334
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A notion of "monotonic independence" is formulated in the setting of C*-probability space. Based on this independence, a noncommutative central limit theorem and a noncommutative law of small numbers are given.
引用
收藏
页码:39 / 58
页数:20
相关论文
共 19 条
[1]   Interacting Fock spaces and Gaussianization of probability measures [J].
Accardi, L ;
Bozejko, M .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1998, 1 (04) :663-670
[2]   Notions of independence related to the free group [J].
Accardi, L ;
Hashimoto, Y ;
Obata, N .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1998, 1 (02) :201-220
[3]  
ACCARDI L, 1999, NAGOYA MATH LECT, V2
[4]  
[Anonymous], 1993, QUANTUM PROBABILITY, DOI DOI 10.1007/978-3-662-21558-6
[5]   AN EXAMPLE OF A GENERALIZED BROWNIAN-MOTION [J].
BOZEJKO, M ;
SPEICHER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (03) :519-531
[6]  
Bozejko M, 1996, PAC J MATH, V175, P357
[7]  
Bozejko M., 1998, BANACH CTR PUBL, V43, P95
[8]   ALGEBRAIC VERSION OF CENTRAL LIMIT-THEOREM [J].
GIRI, N ;
WALDENFELS, WV .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 42 (02) :129-134
[9]  
KUMMERER B, MARKOV DILATIONS NON
[10]  
LU YG, 1997, PROB MATH STAT, V17, P1