Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse

被引:53
作者
Inogamov, N. A. [1 ]
Zhakhovskii, V. V. [2 ]
Khokhlov, V. A. [1 ]
机构
[1] Russian Acad Sci, Landau Inst Theoret Phys, Chernogolovka 142432, Moscow Oblast, Russia
[2] Dukhov All Russia Res Inst Automat, Moscow 127055, Russia
基金
俄罗斯科学基金会;
关键词
WARM DENSE MATTER; EQUATION-OF-STATE; X-RAY; ATOMISTIC SIMULATION; ELECTRON SUBSYSTEM; GOLD-FILMS; ABLATION; IRRADIATION; DYNAMICS; DIELECTRICS;
D O I
10.1134/S1063776115010136
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is well known that during ablation by an ultrashort laser pulse, the main contribution to ablation of the substance is determined not by evaporation, but by the thermomechanical spallation of the substance. For identical metals and pulse parameters, the type of spallation is determined by film thickness d (f) . An important gauge is metal heating depth d (T) at the two-temperature stage, at which electron temperature is higher than ion temperature. We compare cases with d (f) < d (T) (thin film) and d (f) a parts per thousand << d (T) (bulk target). Radius R (L) of the spot of heating by an optical laser is the next (after d (f) ) important geometrical parameter. The morphology of film bulging in cases where d (f) < d (T) on the substrate (blistering) changes upon a change in radius R (L) in the range from diffraction limit R (L) similar to lambda to high values of R (L) a parts per thousand << lambda, where lambda similar to 1 mu m is the wavelength of optical laser radiation. When d (f) < d (T) , R (L) similar to lambda, and F (abs) > F (m), gold film deposited on the glass target acquires a cupola-shaped blister with a miniature frozen nanojet in the form of a tip on the circular top of the cupola (F (abs) and F (m) are the absorbed energy and the melting threshold of the film per unit surface area of the film). A new physical mechanism leading to the formation of the nanojet is proposed.
引用
收藏
页码:15 / 48
页数:34
相关论文
共 88 条
[11]  
Bushman A. V., 1992, EQUATIONS STATE META
[12]  
Bushman A.V., 1993, Intense Dynamic Loading of Condensed Matter
[13]   Atomistic modeling of ultrashort-pulse ultraviolet laser ablation of a thin LiF film [J].
Cherednikov, Yaroslav ;
Inogamov, Nail A. ;
Urbassek, Herbert M. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (08) :1817-1824
[14]   Liquid-vapor phase transition and droplet formation by subpicosecond laser heating [J].
Chimier, B. ;
Tikhonchuk, V. T. .
PHYSICAL REVIEW B, 2009, 79 (18)
[15]   Exotic Dense-Matter States Pumped by a Relativistic Laser Plasma in the Radiation-Dominated Regime [J].
Colgan, J. ;
Abdallah, J., Jr. ;
Faenov, A. Ya. ;
Pikuz, S. A. ;
Wagenaars, E. ;
Booth, N. ;
Culfa, O. ;
Dance, R. J. ;
Evans, R. G. ;
Gray, R. J. ;
Kaempfer, T. ;
Lancaster, K. L. ;
McKenna, P. ;
Rossall, A. L. ;
Skobelev, I. Yu. ;
Schulze, K. S. ;
Uschmann, I. ;
Zhidkov, A. G. ;
Woolsey, N. C. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[16]   Ablation and spallation of gold films irradiated by ultrashort laser pulses [J].
Demaske, Brian J. ;
Zhakhovsky, Vasily V. ;
Inogamov, Nail A. ;
Oleynik, Ivan I. .
PHYSICAL REVIEW B, 2010, 82 (06)
[17]  
Ebeling W., 1991, Thermophysical Properties of Hot Dense Plasmas
[18]   Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation [J].
Emel'yanov, V. I. ;
Zayarniy, D. A. ;
Ionin, A. A. ;
Kiseleva, I. V. ;
Kudryashov, S. I. ;
Makarov, S. V. ;
Nguyen, T. H. T. ;
Rudenko, A. A. .
JETP LETTERS, 2014, 99 (09) :518-522
[19]   Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum [J].
Fisher, D ;
Fraenkel, M ;
Henis, Z ;
Moshe, E ;
Eliezer, S .
PHYSICAL REVIEW E, 2002, 65 (01)
[20]   The physics of ultra-short laser interaction with solids at non-relativistic intensities [J].
Gamaly, E. G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2011, 508 (4-5) :91-243