Quantum complex Henon-Heiles potentials

被引:82
作者
Bender, CM
Dunne, GV [1 ]
Meisinger, PN
Simsek, M
机构
[1] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[2] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[3] Gazi Univ, Fen Edebiyat Fak, TR-06500 Teknikokullar Ankara, Turkey
关键词
PT-symmetry; large order perturbation theory; multidimensional WKB;
D O I
10.1016/S0375-9601(01)00146-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum-mechanical PT-symmetric theories associated with complex cubic potentials such as V = x(2) + y(2) + igxy(2) and V = x(2) + y(2) + z(2) + igxyz, where g is a real parameter, are investigated. These theories appear to possess real, positive spectra. Low-lying energy levels are calculated to very high order in perturbation theory. The large-order behavior of the perturbation coefficients is determined using multidimensional WKB tunneling techniques. This approach is also applied to the complex Henon-Heiles potential V = x(2) + y(2) + ig(xy(2) - (1/3)x(3)). (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:311 / 316
页数:6
相关论文
共 19 条
[1]   COUPLED ANHARMONIC OSCILLATORS .1. EQUAL MASS CASE [J].
BANKS, T ;
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW D, 1973, 8 (10) :3346-3366
[2]   COUPLED ANHARMONIC OSCILLATORS .2. UNEQUAL-MASS CASE [J].
BANKS, T ;
BENDER, CM .
PHYSICAL REVIEW D, 1973, 8 (10) :3366-3378
[3]   ON ISOLATING CHARACTER OF 3RD INTEGRAL IN A RESONANCE CASE [J].
BARBANIS, B .
ASTRONOMICAL JOURNAL, 1966, 71 (06) :415-&
[4]   LARGE-ORDER BEHAVIOR OF PERTURBATION THEORY [J].
BENDER, CM ;
WU, TS .
PHYSICAL REVIEW LETTERS, 1971, 27 (07) :461-&
[5]   Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian [J].
Bender, CM ;
Dunne, GV .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) :4616-4621
[6]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[7]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[8]   Variational ansatz for PJ-symmetric quantum mechanics [J].
Bender, CM ;
Cooper, F ;
Meisinger, PN ;
Savage, VM .
PHYSICS LETTERS A, 1999, 259 (3-4) :224-231
[9]   ANHARMONIC OSCILLATOR .2. STUDY OF PERTURBATION-THEORY IN LARGE ORDER [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW D, 1973, 7 (06) :1620-1636
[10]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&