AN IMPROVEMENT TO A BEREZIN-LI-YAU TYPE INEQUALITY

被引:16
|
作者
Yolcu, Selma Yildirim [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Fractional Laplacian; Weyl law; universal bounds; Klein-Gordon operator; Berezin-Li-Yau inequality; CAUCHY PROCESS; BOUNDS;
D O I
10.1090/S0002-9939-2010-10419-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we improve a lower bound for Sigma(k)(j=1) beta(j) (a Berezin-Li-Yau type inequality) that appeared in an earlier paper of Harrell and Yolcu. Here beta(j) denotes the jth eigenvalue of the Klein Gordon Hamiltonian H-0,H-Omega = vertical bar p vertical bar when restricted to a bounded set Omega subset of R-n. H-0,H-Omega can also be described as the generator of the Cauchy stochastic process with a killing condition on partial derivative Omega. To do this, we adapt the proof of Melas, who improved the estimate for the bound of E-j=1(k) lambda(j), where lambda(j) denotes the jth eigenvalue of the Dirichlet; Laplacian on a bounded domain in R-d.
引用
收藏
页码:4059 / 4066
页数:8
相关论文
共 50 条
  • [21] An improvement of the sharp Li-Yau bound on closed manifolds
    Wu, Jia-Yong
    ARCHIV DER MATHEMATIK, 2024, 123 (03) : 309 - 318
  • [22] A Note on Li-Yau-Type Gradient Estimate
    Chengjie Yu
    Feifei Zhao
    Acta Mathematica Scientia, 2019, 39 : 1185 - 1194
  • [23] A NOTE ON LI-YAU-TYPE GRADIENT ESTIMATE
    Yu, Chengjie
    Zhao, Feifei
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (04) : 1185 - 1194
  • [24] A NOTE ON LI-YAU-TYPE GRADIENT ESTIMATE
    余成杰
    赵菲菲
    ActaMathematicaScientia, 2019, 39 (04) : 1185 - 1194
  • [25] THE LI-YAU INEQUALITY AND APPLICATIONS UNDER A CURVATURE-DIMENSION CONDITION
    Bakry, Dominique
    Bolley, Francois
    Gentil, Ivan
    ANNALES DE L INSTITUT FOURIER, 2017, 67 (01) : 397 - 421
  • [26] Holomorphic sectional curvature, nefness and Miyaoka–Yau type inequality
    Yashan Zhang
    Mathematische Zeitschrift, 2021, 298 : 953 - 974
  • [27] New estimations for the Berezin number inequality
    Mojtaba Bakherad
    Ulas Yamancı
    Journal of Inequalities and Applications, 2020
  • [28] New estimations for the Berezin number inequality
    Bakherad, Mojtaba
    Yamanci, Ulas
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [29] Linear Trace Li–Yau–Hamilton Inequality for the CR Lichnerowicz–Laplacian Heat Equation
    Shu-Cheng Chang
    Ting-Hui Chang
    Yen-Wen Fan
    The Journal of Geometric Analysis, 2015, 25 : 783 - 819
  • [30] The Berezin inequality on domains of infinite measure
    Schimmer, Lukas
    BULLETIN OF MATHEMATICAL SCIENCES, 2013, 3 (01) : 173 - 182