Deep learning searches for gravitational wave stochastic backgrounds

被引:1
作者
Utina, Andrei [1 ,2 ]
Marangio, Francesco [3 ]
Morawski, Filip [4 ]
Iess, Alberto [5 ]
Regimbau, Tania [6 ]
Fiameni, Giuseppe [7 ,8 ]
Cuoco, Elena [9 ]
机构
[1] Maastricht Univ, GWFP, Maastricht, Netherlands
[2] Nikhef, Maastricht, Netherlands
[3] LMU Munchen, Geschwister Scholl Pl 1, D-80539 Munich, Germany
[4] Polish Acad Sci, Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland
[5] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy
[6] CNRS, LAPP, 9 Chemin Bellevue, F-74941 Annecy Le Vieux, France
[7] NVIDIA AI Technol Ctr, Rome, Italy
[8] NVIDIA Corp, Santa Clara, CA USA
[9] Ist Nazl Fis Nucl, European Gravitat Observ EGO, Scuola Normale Super, Pisa, Italy
来源
2021 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI) | 2021年
关键词
Gravitational Wave Backgrounds; Deep Learning; CNN; LSTM; ET; LIGO;
D O I
10.1109/CBMI50038.2021.9461904
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The background of gravitational waves (GW) has long been studied and remains one of the most exciting aspects in the observation and analysis of gravitational radiation. The paper focuses on the search for the background of gravitational waves using deep neural networks. An astrophysical background due to the presence of many binary black hole coalescences was simulated for Advanced LIGO O3 sensitivity and the Einstein Telescope (ET) design sensitivity. The detection pipeline targets signal data out of the noisy detector background. Its architecture comprises of simulated whitened data as input to three classes of deep neural networks algorithms: a 1D and a 2D convolutional neural network (CNN) and a Long Short Term Memory (LSTM) network. It was found that all three algorithms could distinguish signals from noise with high precision for the ET sensitivity, but the current sensitivity of LIGO is too low to permit the algorithms to learn signal features from the input vectors.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [41] SEINN: A deep learning algorithm for the stochastic epidemic model
    Torku, Thomas
    Khaliq, Abdul
    Rihan, Fathalla
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 16330 - 16361
  • [42] Memristive Stochastic Computing for Deep Learning Parameter Optimization
    Lammie, Corey
    Eshraghian, Jason K.
    Lu, Wei D.
    Azghadi, Mostafa Rahimi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (05) : 1650 - 1654
  • [43] Deep learning for efficient stochastic analysis with spatial variability
    He, Xuzhen
    Wang, Fang
    Li, Wengui
    Sheng, Daichao
    ACTA GEOTECHNICA, 2022, 17 (04) : 1031 - 1051
  • [44] Deep learning for efficient stochastic analysis with spatial variability
    Xuzhen He
    Fang Wang
    Wengui Li
    Daichao Sheng
    Acta Geotechnica, 2022, 17 : 1031 - 1051
  • [45] Deep Packet: Deep Learning Model for Intrusion Detection
    Kiet Nguyen Tuan
    Nguyen Duc Thai
    INTELLIGENCE OF THINGS: TECHNOLOGIES AND APPLICATIONS, ICIT 2024, VOL 2, 2025, 230 : 339 - 348
  • [46] Modeling and searching for a stochastic gravitational-wave background from ultralight vector bosons
    Tsukada, Leo
    Brito, Richard
    East, William E.
    Siemonsen, Nils
    PHYSICAL REVIEW D, 2021, 103 (08)
  • [47] Deep Learning Analysis of Polaritonic Wave Images
    Xu, Suheng
    McLeod, Alexander S.
    Chen, Xinzhong
    Rizzo, Daniel J.
    Jessen, Bjarke S.
    Yao, Ziheng
    Wang, Zhicai
    Sun, Zhiyuan
    Shabani, Sara
    Pasupathy, Abhay N.
    Millis, Andrew J.
    Dean, Cory R.
    Hone, James C.
    Liu, Mengkun
    Basov, D. N.
    ACS NANO, 2021, 15 (11) : 18182 - 18191
  • [48] Stochastic Computing for Low-Power and High-Speed Deep Learning on FPGA
    Lammie, Corey
    Azghadi, Mostafa Rahimi
    2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,
  • [49] Deep learning for tilted-wave interferometry
    Hoffmann, Lara
    Fortmeier, Ines
    Elster, Clemens
    TM-TECHNISCHES MESSEN, 2022, 89 (01) : 33 - 42
  • [50] Solving inverse wave scattering with deep learning
    Fan, Yuwei
    Ying, Lexing
    ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS, 2022, 7 (01) : 23 - 48